Network Options Assessment

RIIO-2 Costs & Outputs working group 25 September 2018

David Bowman

Contents

- What is the NOA?
- What the NOA is and isn't
- Interaction with FES and ETYS
- Process and Statistics
- Options and Costs
- Methodology
- Hypothetical Example

The NOA aims to help our industry ensure a secure, sustainable and affordable energy future

What is the NOA?

• The NOA recommends which Transmission Owner proposed investments would best manage the capability of the GB transmission network against the uncertainty of the future

Why undertake the NOA?

- We need to balance asset investment, network management and consumers' money
- The energy landscape is uncertain NOA helps manage this uncertainty

NOA 2017/18

• Recommend £22.1m investment in 2018/19 across 22 projects that can deliver £3.2bn investment across their lifetime

What NOA is and what NOA isn't

What the NOA can do

- Recommend the most economic options to proceed to meet bulk power transfer requirements as detailed in ETYS
- Recommend what, where and when transmission investments should be made to facilitate an efficient, co-ordinated and economic future transmission system
- Recommend starting, stopping or delaying reinforcement projects to make sure they are completed at a time to deliver the most benefit to consumers
- Indicate projects eligible for onshore competition

What the NOA cannot do

- Insist options are pursued. This is for TOs and others to ultimately decide.
- Make recommendations for system needs other than bulk transfer (for now)
- Comment on possible planning, delivery or deign details. TOs decide how to implement their options.

The NOA utilise the information provided by FES and ETYS

Future Energy Scenarios (FES)

- Plausible range of scenarios for the future energy landscape to 2050
- Foundation for the studies and economic analysis

Electricity Ten Year Statement (ETYS)

- Applies FES to power system models
- Calculate power flows across transmission network using boundaries
- Details capability of the GB electricity transmission network and future
 requirements under different FES scenarios

nationalgridESO

NOA 2017/18 process and statistics

TOs submit options	76 options submitted for economic analysis			
Create optimal path for each FES scenario (lots of combinations!)	53 options optimal under at least one scenario		23 options non-optimal	
	22 options' decisions considered critical	31 options' decisions considered non-critical	Proceed with the delivery of one option	Stop progressing with one option that is no longer optimal
methodology (least worst regrets)			One option to be put on hold for SWW assessment	Do not start with the remaining 20 non-optimal options
Recommendations	Proceed with the delivery of 20 options	Proceed with the delivery of one option		
	Delay the delivery of two options	30 options be put on hold		

TOs can propose a number of different options; the NOA considers these against a range of costs

Potential transmission solutions

Build options

- New build
- Switchgear or cable replacement

Alternative options

Storage

• ...

- HVDC de-load
- Automatic switching
- Intertrip

🕈 ...

Cost modelling assumptions and inputs

- Fuel price forecasts
- Carbon price
- Plant efficiencies and season availabilities
- Renewable generation
- Demand data
- Demand profiles
- Maintenance outage patterns
- System boundary capabilities
- Reinforcement incremental capabilities

national**gridESO**

NOA methodology for assessing critical options

NOA aims to balance constraint costs associated with bulk transfer of power with investment costs of alleviating these constraints

It uses the principle of single least worst regret (i.e. the worst we could have failed to gain having chosen a particular scenario). This minimises the risk to consumers.

Main steps:

- 1. TO options have an EISD (Earliest In Service Date) and an optimum year of delivery. To avoid investing too early or too late we analyse "critical" options, where these years are the same.
- 2. We calculate the regret of different combinations of TO options under each scenario.
- 3. We choose the strategy with the least worst regret under all scenarios.

Hypothetical Example (1/2)

We calculate the net benefits and regrets of different strategies across a single scenario....

Scenario A	Strategy 1	Strategy 2	Strategy 3
Initial investment cost	£40m	£20m	£60m
Savings in constraint costs	£420m	£220m	£460m
Net benefit	£380m	£200m	£400m
Regret	£20m	£200m	£0m

Hypothetical Example (2/2)

...and repeat across all scenarios to find the single least worst regret

		Strategy 1	Strategy 2	Strategy 3
iii	Scenario A	£380m	£200m	£400m
et Benef	Scenario B	£120m	£165m	£125m
	Scenario C	£350m	£50m	£250m
Ž	Scenario D	£160m	£150m	£185m
		Strategy 1	Strategy 2	Strategy 3
Regret	Scenario A	£20m	£200m	£0m
	Scenario B	£45m	£0m	£40m
	Scenario C	£0m	£300m	£100m
	Scenario D	£25m	£35m	£0m
Wors	t regret	£45m	£300m	£100m
10		Least worst regret → Proceed (subject to NOA committee and implied probability considerations)		national grid

Find out more

https://www.nationalgrideso.com/insights/network-options-assessment-noa

nationalgrideso.com

Faraday House, Warwick Technology Park, Gallows Hill, Warwick, CV346DA

