

DEVELOPING FUTURE POWER NETWORKS

PROJECT PROGRESS REPORT REPORTING PERIOD:
December 2014 – May 2015

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Report Title : Six monthly progress report

Reporting period: December 2014

to June 2015

Report Status : FINAL

Project Ref : WPDT2002 - FALCON

Date : 12.06. 2015

Document Control		
	Name	Date
Prepared by:	Roger Hey	June 2015
Recommended by:	Paul Jewell	June 2015
Approved (WPD):	Philip Swift	June 2015

Revision History		
Date	Issue	Status
13.05.2015	0.1	Initial
14.05.2015	0.2	redrafted
03.06.2015	0.3	Updated
12.06.2015	0.4	Final

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Contents

1	E	xecutive Summary	5
	1.1	Business Case	5
	1.2	Project Progress	5
	1.3	Project Delivery Structure	6
		Project Review Group6)
		Resourcing6	
		Collaboration Partners6	
	1.4	Procurement	6
	1.5	Installation	6
	1.6	Project Risks	6
	1.7	Project learning and dissemination	6
2	P	roject Managers Report	8
	2.1	Project Background	8
	2.2	Project Progress	
	2.3	Progress against Knowledge Capture and Dissemination	11
	2.4	Progress against Installation activities	
	2.5	Progress against Commercial Trials	
	2.6	Progress against Scenario Investment Model	
	2.7	Progress against Load Estimation	
3	В	usiness Case Update	18
4		rogress against Budget	
5	Sı	uccessful Delivery Reward Criteria (SDRC)	23
	5.1	Future SDRCs	
6		earning Outcomes	
7		itellectual Property Rights	
8	R	isk Management	
	8.1	Current Issues	
	8.2		
9		onsistency with Full Submission	
1() A	ccuracy Assurance Statement	33

DISCLAIMER

Neither WPD, nor any person acting on its behalf, makes any warranty, express or implied, with respect to the use of any information, method or process disclosed in this document or that such use may not infringe the rights of any third party or assumes any liabilities with respect to the use of, or for damage resulting in any way from the use of, any information, apparatus, method or process disclosed in the document.

© Western Power Distribution 2015

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the written permission of the Future Networks Manager, Western Power Distribution, Herald Way, Pegasus Business Park, Castle Donington. DE74 2TU. Telephone +44 (0) 1332 827446. E-mail wPDInnovation@westernpower.co.uk

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Glossary

Term	Definition	
DR5	The price control period covering 2010-2015.	
DSM	Demand Side Management.	
ESS	Electrical Energy Storage.	
KC&D	Knowledge Capture and Dissemination	
HST	High Speed Teleprotection.	
IPSA	Network Analysis software provided by TNEI as the Network Modelling Tool within the SIM.	
Netspan	This is Airspan's proprietary network monitoring tool for the WiMAX communications network.	
NMT	Network Modelling Tool – the powerflow analysis software within the SIM.	
Power On Fusion	Distribution Management System provided to WPD by GE and modified to form part of the TDMS for the FALCON Trials.	
PRG	Project Review Group.	
SDRC	Successful Delivery Reward Criteria.	
SIM	The Scenario Investment Model is a new Network Modelling Tool being built specifically for the project.	
TDMS	Trials Distribution Management System.	

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

1 Executive Summary

FALCON is funded through Ofgem's Low Carbon Networks Second Tier funding mechanism. The project commenced in December 2011 and will be complete by 30th September 2015.

The project had a series of distinct phases and in previous reports we have indicated that there has been some parallel working for the final parts, this is now complete. Whilst additional data collection activity continues, the final six months have seen the finalisation of the trials, the completion of the load estimation work and the SIM. We are now undertaking the 28 various run of the SIM through to July.

This report details the progress of FALCON, focusing on the last six months, December 2014 to June 2015.

1.1 Business Case

As in previous reports, we forecast that there will be no significant benefits (either carbon or financial) during the course of the project trials, as there is no change to the existing DR5 plan. Our approach for capturing benefits for each technique has been documented and a process is in place to ensure any future benefits are captured.

1.2 Project Progress

FALCON completed its initial Design Phase in September 2012. The subsequent Build Phase took longer than planned but the Trials Phase took place in parallel with the Build and Consolidate and Share phases. Delivery of project tasks has taken longer than expected, but trials are complete in all of the techniques.

The Mesh Networks trials were behind schedule due to significant technical issues with the innovative telecommunications platform. The trials are now complete and further information is provided within this report.

Key Achievements during this reporting period are:

- Completion of all remaining trials
- Completion of the SIM, now running the 28 scenarios
- 100% Telecoms network coverage for the majority of the period
- Completion of load estimation analytics
- Successful completion of Commercial trials and compilation of the final reports
- Attendance and representation at a number of industry forums and events
- Planning for closure of the project well under way

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

1.3 Project Delivery Structure

Project Review Group

The FALCON Project Review Group (PRG) has met twice during this reporting period and the wider project team has been meeting regularly and progressing matters as they have occurred. As the project is approaching the final elements through to completion, the PRG's role is more focussed on the approvals of the reports. More information on this is provided in the overall project report.

Resourcing

No resourcing matters to report during this period.

Collaboration Partners

There has been no change to the collaboration partners during this reporting period.

1.4 Procurement

There has been no procurement activity during this reporting period.

1.5 Installation

No installation activity has been undertaken during this period.

1.6 Project Risks

Throughout the project the Project Office, Project Manager and Workstream Leaders have taken a proactive role in ensuring effective risk management for FALCON. Processes have been put in place to review whether risks still exist, whether new risks have arisen, whether the likelihood and impact of risks has changed, to report significant changes which adjust risk priorities and deliver assurance of the effectiveness of control.

In keeping with the last report, Section 8 contains the current top risks associated with successfully delivering FALCON as captured in our Risk Register along with an update on the risks captured in our last six monthly project report. **Error! Reference source not found.** provides an update on the most prominent risks identified at the project bid phase as we approach the final push a large number of them are now closed.

1.7 Project learning and dissemination

Project lessons learned and what worked well are captured throughout the project lifecycle. They are captured through a series of on-going reviews with stakeholders and project team members, and will be shared in lessons learned workshops at the end of the project.

During this reporting period we have continued to collate and share key areas of learning across the spectrum of the project. Notable key areas during recent months include:

WESTERN POWER DISTRIBUTION FALCON

SIX MONTHLY PROGRESS REPORT: FALCON

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

- The successful completion and submission of our SDRCs.
- Our online workshop to share, consult and feedback on these SDRC milestones.
- The completion of the Commercial Trials Season 2 and preparation of final reports.
- Increased profile of FALCON across key industry events and publications.

Whilst knowledge capture continues to be one of the main aims of the project, we are increasing levels of dissemination during the final year, as information becomes available and consultation becomes more relevant.

We have shared our learning where possible, through several events as well as leading industry publications such as The IET's E&T Magazine and Transmission & Distribution World feature articles. Some of the key events are shown here.

Event Title	Information	Contribution
GEODE	The Voice of European Network	Speaker
	Operators hosted a sharing event on	
	Smart Grid Programmes in Europe.	
Utility Week 2015	FALCON used this event as an	Exhibitor &
	opportunity to engage a wide variety of	Speaker
	stakeholders, as well as present findings	
	on a number of our projects.	
Demand Response &	Industry event attended by DNOs and	Speaker
Future Networks	regulatory bodies from across the UK.	
Conference		
MK Future Cities	Hosted by the Transport Catapult,	Exhibitor
	FALCON was invited to exhibit and	
	present the work in Milton Keynes.	
Smart Grid GB	A joint dissemination event hosted by	Speaker
	industry group Smart Grid GB was held	
	to share findings from FALCON across a	
	number of areas such as telecoms,	
	energy storage and data management.	
The Mathematics of	An academic audience at The Open	Speaker
Demand Side	University saw a presentation by the	
Management	FALCON on the successes and challenges	
	of using Electrical Energy Storage (ESS)	
	for Demand Side Management (DSM).	

Table 1 - Contribution to knowledge sharing events hosted by other organisations

Alongside our ongoing normal dissemination channels including feature articles, our website and newsletters, we will be conducting more targeted events for the remainder of 2015 including a full dissemination event for the entire project after the end date.

Further information in respect of project learning and dissemination is provided in Sections 2 and 6.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

2 Project Managers Report

2.1 Project Background

FALCON is now in its final few months. The aims were to facilitate the installation of low carbon technologies by delivering faster and cheaper connections of the HV network by complementing conventional reinforcement with smarter solutions. The trials will provide learning on the use of real time data to inform network planning rather than traditional indicators such as total demand and engineering guidelines. The learning obtained throughout the project will be shared with other DNOs and the wider industry. In addition to the engineering trials there are two commercial trials which have, over the course of the project, delivered significant new learning for WPD and its stakeholders.

In addition FALCON is building a prototype network modelling tool for 11kV planners, called the Scenario Investment Model (SIM) as well as a WiMAX telecoms network.

FALCON is a large complex delivery and whilst it has been challenging as the project prepares for the final few months it is clear that there is considerable learning.

FALCON has run from January 2012 and will complete its objectives on 30th September 2015 with the final SDRC due then.

2.2 Project Progress

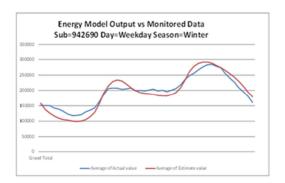
The FALCON project is into the last three months of its lifecycle. This report focuses on the completion of the trials, and the work ongoing to finalise the load analytics, the SIM and the maintenance of the telecoms network undertaken during months December 2014 to June 2015.

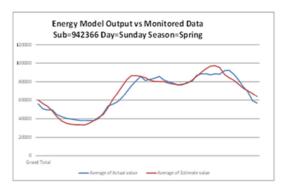
As confirmed in the previous report, the High Speed Tele-protection (HST) requirements meant a rescope of the meshing trials and the consequent removal of the build of a complex mesh. We have completed a simple mesh network as planned.

Should the telecoms providers be able to improve the performance of their products to meet the engineering requirements then the complex meshing scheme may be revisited outside the scope of Project FALCON.

The construction and commissioning of infrastructure at the trial sites has been considerably more extensive than originally planned, but has provided learning which we will discuss in more detail within this report and in further depth throughout our suite of closing reports.

The Engineering trials started during 2014 with some of the techniques operational since December 2013, ensuring that a years' worth of data is available. Whilst some of the trials did run behind schedule we have ensured that data capture has been the focus of our




REPORTING PERIOD: DECEMBER 2014 – MAY 2015

mitigating actions throughout. Data is the key requirement for the SIM and therefore been a constant factor throughout our planning and actions.

The SIM workstream is running well and to timescale. We have experienced some issues with the integration of the SIM Harness and the IPSA Network Modelling Tool, but these have been resolved. The SIM itself is now completed and the various runs are being undertaken. Significant time and effort has been spent making sure that the system works in the way that it was intended and therefore whilst there has been delays it was always seen as more important to make the system work. Early indications are that the SIM is indeed proving to be of value, but as the runs are completed the full value will become clearer.

SDRC 4 delivered our energy modelling findings that went into the SIM, as well as our consultation process, and we have followed this up with industry presentations on the FALCON model including Smart Energy Analytics in May and our dissemination event with Smart Grid GB in June. As the examples below show, our refined models can get excellent results when overlaid with actual data.

FALCON Energy Model Actual vs Estimated 1

As mentioned in the previous report, the Trials Distribution Management System (TDMS) built by GE for FALCON was delivered as part of their product release cycle. This would have allowed the functionality to be available within WPD and to other users of the system with immediate effect. However this approach has meant that extensive testing both within "business as usual" and the FALCON teams has been required which could have delayed data collection. We mitigated this project risk, by working on supplementary data collection solutions where appropriate to ensure that data for the trials and the SIM is captured.

The second set of revised Commercial Trials ran successfully over the winter period of 2014-2015 and the billing run was completed. The results have been analysed and the findings are being disseminated throughout the remainder of the summer. We have already begun to share findings at some of the events mentioned in the summary.

During the last reporting period we explained some of the challenges in the engineering trials that were exacerbated by issues with the new Telecoms WiMAX based network. Some ad-hoc periods of instability prevented some of the automated parts of the

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

engineering trials starting and we are now intending to run those parts of the ALT and Mesh trials over backup communications network solutions (using proven BAU solutions). We now have good connectivity across 192 sites with limited instability. We have discussed the telecoms installations in our last report and whilst this is new technology, we have learnt a huge amount in our work with the FALCON system and we will continue to learn from it as we go forward.

We have shared our findings on both the overall system and WiMAX alone with the industry and through our project partners. Our closing reports will provide more in depth detail and our final event will summarise key areas of learning.

Our high level plan for the remainder of the project is shown in Figure 1 and remains again unchanged from the last report:

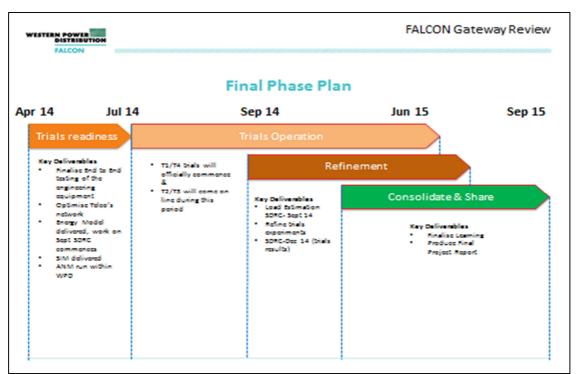


Figure 1 - Final Phase Plan

We have been planning the content of the final reports since January and have a number of drafts ready for completion once the final parts of the project have been completed. This has been a focus of the last few months in particular given the delays in some areas of the project and the need to map out properly how best to disseminate the learning to the relevant areas. In addition the planning of the final parts of the project has proven a useful opportunity to reflect on the project overall and produced some interesting additional learning that will part of the overall learning report.

The remaining sections of the report reflect the progress within each project area.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

2.3 Progress against Knowledge Capture and Dissemination

The Knowledge Capture and Dissemination part of the project continues to make consistent and positive progress as we move into the final period of the project. The final reports will form the basis of our outputs in detail from each area of Project FALCON.

Further information is contained with Section 6 of this report however, some of the main achievements in this reporting period include:

- The on time completion of SDRCs 5 and 6 delivered at the end of 2014, with a follow up webinar presented on January 29th. Both of these items are readily available on our website.
- We took the FALCON display and our set of interactive models to Utility Week Live 2015, a major industry event, during the week of 20th April. We also have videos of these models in operation on our website and social media outlets.
- We complimented the above demonstrations by presenting findings from Season 2 of our Commercial Trials at Utility Week Live, also driving people to see our models in action
- Our newsletter issued in April, was designed to share our findings from the Dynamic Asset Rating trials and offered updates on the other techniques. These are all available through our website.

We have completed a number of further speaking opportunities and our plans for our closing event in October following our final reporting period in September are taking shape. All of these reports and events will be made public both through our website and social media channels, as well as emailed to our existing key stakeholder list.

There are no risks with this work stream at the time of this report.

2.4 Progress against Installation activities

Engineering Techniques

The engineering trials are now complete. We have had some challenges throughout the project, but we have completed a set of trials that are robust. As stated in previous reports, issues were encountered during commissioning the trials equipment and the FALCON telecoms solution. These issues meant that the trials switchgear equipment could not be commissioned over the project WiMAX solution. Instead they were commissioned over legacy UHF telecoms.

The status of each of the trials is shown in Table 2 below:

Technique	Status
DAR - Technique 1	Data collection undertaken and the thermal modelling
Overhead Line, cables,	validated against actual temperatures and a variety of
secondary transformers	operating circumstances.

& Primary Transformers	Initial learning from installation, commissioning, early operation and implications for the SIM have been reported in
	December 2014 SDRC report.
	Final reporting is expected to focus on:
	 Design, construction and commissioning of the technique
	Thermal models and instantaneous ampacity
	assessments
	Forward ampacity based on forecast ambient
	conditions
	Application recommendations based on trials
ALT and Mesh - T2 and T3- remote control	Early operational instability of FALCON telecoms network led to plans being made for interim commissioning of remote control of the switchgear in these techniques via current policy UHF communications.
	Commissioned switchgear via UHF solution, and FALCON comms solution not used for control of plant under this project. Recommendations associated with this will be included in the final report.
ALT - Technique 2-	Trials of network reconfigurations on the underground and
Automated Load Transfer	overhead trial networks have taken place focusing on optimisation for network voltage and losses, and also on load balancing.
	Initial learning from installation, commissioning, early operation and implications for the SIM have been reported in December 2014 SDRC report.
	Final reporting is expected to focus on:
	 Design, construction and commissioning of the technique
	Modelling and benefit assessment of potential changes
	to open points
	 Trials of revised open points & evaluation of benefits Application Recommendations resulting from the Trials
Mesh - Technique 3- Meshed Network	High speed signalling over the FALCON Telecoms network has not yet been satisfactorily achieved and the implementation programme has therefore been adjusted. Efforts have continued to improve high speed switching times
	whilst protection arrangements are implemented that allowed operation of the simple mesh network. Results of this are under way now and will form part of the final data collection activities.
	Commissioning of revised simple mesh trials were commissioned Q2 2015, with trials commencing monitoring and modelling the benefits of closed ring/mesh operation. Final reporting is expected to focus on:
	Design, construction and commissioning of the technique
	recinique

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

	 Modelling and benefit assessment of closed ring/mesh 	
	operation	
	 Trials of closed ring/mesh operation 	
	Application Recommendations resulting from the Trials	
T4 – Energy Storage	Further trials in this period focused on the impact of combined sites operations on the feeder, and also on voltage influence. Initial learning from installation, commissioning, early operation and implications for the SIM were reported in December 2014 SDRC report. Final reporting is expected to focus on: Design, construction and commissioning Basic operation characteristics, including control system Reliability and availability Peak Shaving/potential to provide 11kV feeder capacity support Frequency Response Voltage response	
	Power Quality	
LVM	Data is now being consistently captured from all the sites that FALCON comms have been connected to. This data is available via access databases and has positively fed into learning on substation profiles through comparison with the work of EST. Final reporting is expected to focus on: Design, construction and commissioning	
	 Basic operation characteristics, and reported data Reliability and availability Application Recommendations resulting from the Trials 	

Table 2 - Engineering Trials status

Telecoms

We have continued to support the network components installed and conduct monitoring of the health of the network overall. Over the current period we have seen a sustained level of availability and have been operating the network in a routine manner. We have also contacted the JRC to enquire about the future status of the trial WiMAX "licence to test" that we have been using and seeking their inputs for inclusion in the final report.

In the final network configuration we have 192 active locations (including the primary sites). These are returning both intervention technique data and LVM data files (158 sites). The network management activities include quick look analysis using the monitoring tools, routine inspection, occasional router reboots and proactive activities to improve radio statistics in a process of continuous improvement and optimisation.

For example, adjustments have been required at Marlborough Street Primary substation that connects via the site Newport Pagnell. The antenna for this was previously mounted in such a way it was directed at an adjacent pole and hindering the connection so minor physical adjustments have been required to maximise coverage moving forward.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

We have also made further refinements to some local antennas to maximise our continuous coverage results which has improved some areas with seasonally patchy reception. These findings continue to be made as seasonal alterations bring alterations to items such as foliage growth and loss.

Key engineering and telecoms risks

Risk	Mitigation
Installations will not be complete by the end of the Build Phase	A detailed installation plan has been developed and has been shared with all parties involved in the installation. The team have closely liaised with the team managers and Surf Telecoms team managers to ensure resources are available when needed. Update: This risk came to fruition for the engineering techniques and telecoms—the installation activity wasn't complete by the end of September 2013. This risk is now closed and implementation activity
	ceased early in 2015.
The technology used in the Project doesn't work - it may fail during testing	Detailed designs, descriptions and testing plans are being created or have already been created. The equipment has been tested in the test lab before it has been deployed on the network. We have ensured that there has been and will continue to be close liaison between suppliers, partners and WPD to develop a deliverable solution. We continue to use the lab to test equipment and we remain confident that at the conclusion of installation activity it will work but have catered for some end to end testing to ensure it does.
	Update: There have been some issues with the CISCO and Airspan integration. Whilst they are adequate on our existing trial basis, there is still one issue to be resolved. We believe this is linked to a firmware issue and the issue has been escalated both within CISCO and Airspan. For this system to be rolled out on a wider scale, this would need resolving before it commenced and the issue remains with the supplier's R&D lab in San Jose for research and rectification

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

before any adoption of it on a wider basis.

Table 3 - Key engineering and telecoms risks

2.5 Progress against Commercial Trials

The commercial trials were altered for season 2 in order to improve on the successes of the first trials and address some of the challenges.

On the whole the trials were successful with the initial impression of the changes over season 1 having a positive impact on the overall performance and value of Demand Response services. Most notably the reliability of the participants would appear to have been significantly improved from <70% in season 1 to >90% in season 2. Much of this is being initially related to the longer advance notice period for operation of the assets (week ahead notifications).

Previous trials were entirely formed of Distributed Generation, however, the second set of trials also saw some load reduction operated. As previously, only one site was contracted directly, with the remainder provided by commercial service providers.

Despite the doubling of the incentive payment and an open invitation to all aggregators to recruit there were none able to offer any load reduction capacity. This raises further concern that the volumes of reduction capacity hoped to be there in some industry forecasts are not yet there.

With the data from the customer sites, as well as on 11kV and 33kV transformers, we have also been able to determine the scale of the impact throughout the network. The analysis is near completion and results of this will be published in the T5&6 full report.

We have been actively sharing the findings of season 2 results across industry events, notably most recently at the co-hosted Smart Grid GB event. It was also included in our industry newsletter distributed to nearly 500 people and published online.

During July and August, we will also be issuing a targeted consultation paper to our industry colleagues to explain our findings and how we intend to continue.

Key risks

Risk	Mitigation
Demand Turndown	There is a risk that we will not have secured
availability will not	sufficient volume to fully demonstrate this aspect of
materialise	the trial, but we are actively working with a number
	of prospects to ensure that we can operate this part
	of the trial.
	Update: This risk came to fruition last winter and we

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

worked closely with partners in the Milton Keynes area to secure customers willing to take part in the winter 2014/15 trials.
We secured a small amount of load turndown from a directly recruited participant who also provided generation. Whilst this was not as high as would be preferred, it was excellent for the trials.
This risk is now closed.

Table 2-5 - Key Commercial Techniques risks

2.6 Progress against Scenario Investment Model

The SIM Workstream has delivered a working SIM and the "runs" are being undertaken now. This builds on the successful delivery of all of the previous SDRCs and deliverables. We finished integration and result validation testing with the NMT, IPSA. This took longer than planned due to the need for the NMT supplier to keep their product development and release schedules working to their own external schedule, and also because we had to conduct a long series of validation tests to ensure that we understood the SIM outputs.

Overall the SIM workstream produced few surprises and followed the path of a typical complex software integration which we are also documenting for the final report. We have been developing and integrating further components and completed this by the end of January 2014. A number of other matters have delayed completion but we were able to do some parallel work that has kept us on track. Since May we have been undertaking the various "runs" of the SIM (there are 28 in total, some of which are small, some much larger). These will be completed by the end of July. These runs form the basis of the network analysis from which we will draw out final report conclusions.

CGI managed the SIM aspects of the project because of their expertise in systems integration activities. This has proven to be invaluable during the complex integration and validation testing aspects and whilst it has been challenging, there have been many lessons that have been learnt about the development of this type of complex IT within a DNO.

We are extremely pleased with the progress of the SIM workstream and the quality of the work being undertaken. This has validated the approach undertaken throughout and pointed the way to future development which is currently being planned.

One of the key aspects of this workstream has been the reliance on TNEI as the providers of the Network Modelling Tool. It has been clear throughout that trying to develop a new type of software solution with a core piece of industry software at the centre, has been more challenging than we thought it would be, but in mitigation the solution is new, as is the way that we are using IPSA. In addition of course, we have to recognise that IPSA also has its own release schedule for TNEI's many other clients that we have had to work around.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Development of the SIM further will need to factor in these lessons.

Key risks

Risk	Mitigation
TNEI and IVHM Centre can't	Cranfield University's IVHM Centre, TNEI, CGI and
make the SIM work as a	WPD are working closely together to ensure
whole	requirements, roles and responsibilities are clear (and
	reflected contractually, where appropriate) as well as
	ensuring a common understanding. Interface
	documents between the NMT and the SIM Harness
	are being developed as part of the detailed design to
	ensure the two elements can work. This of course
	remains a risk to an extent, but we are increasingly
	confident that the SIM project will deliver to
	requirements and therefore intend to only monitor
	this risk moving forward.
	Update: Risk is closed.
Validation/Verification of	There is a risk that we might be able to make the SIM
Results	work but the results will not be meaningful. This
	requires a vigilant eye on the work-stream to ensure
	that the overall design is in line with expectations and
	that its core functions are doing what we envisaged.
	We will report on this risk more in the next report as it
	will become clearer over the next period whether the
	SIM is doing what we intended.
	Update:
	This risk will be closed once real data is run through
	and results validated which we believe to be shortly as
	the SIM runs will be completed by end of July.

Table 2 5 - Key SIM risks

2.7 Progress against Load Estimation

Recent work relating to the Energy Model has focussed on creating the many output files containing the load data that will be used by the SIM. This work is progressing well. As well as the four main load scenarios which were the subject of a consultation with other DNOs, there is a need to create variations of these scenarios to allow for sensitivity testing. Data from UK Power Network's Low Carbon London project has been adapted for use in sensitivity tests around Electric Vehicle charging. Other values have been determined to test sensitivity to clustering factors.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Previously, the EST modelled values have been compared to values obtained by substation monitoring. Where large differences were found these tended to reflect issues with customer data being missing or out of date. The majority of the substations included in the Energy Model are not monitored and so another validation check has been performed using estimates that are based on the settlement process. Where unusually high or low values are found a correction factor has been applied.

There is no change to the previous position of risk and mitigation.

Risk	Mitigation
Risk that the Energy Model does not deliver the quality of results that we expected	Update : This is now closed as the Energy Model output has been validated against the monitoring data. The change to peak demand for the demand scenarios as seen in 2050 has been compared to similar estimates and is within a credible range.
Risk that the NMT is not capable of handling the volumes of data	Have run early DAR technique through NMT and SIM and used NMT for SDRC in September 2013 to test capability. We have no concerns moving forward on this risk. Update: Risk is now closed

Table 2-5 - Key Load Estimation risks

3 Business Case Update

We forecast that there will be no significant benefits (either carbon or financial) during the course of the project trials, as there is no change to the existing DR5 plan. Our approach for capturing benefits for each technique has been documented and a process is in place to ensure any future benefits are captured.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

4 Progress against Budget

A revised budget has been submitted to Ofgem to reflect the updated project plan. For the purposes of this report, progress against the previous budget is shown below whilst the change request is under consideration. We have though provided some commentary and background below on the background behind the change to the budget.

	Total Budget	Forecas t Spend May 2015	Actual Spend May 2015	Variance £	Variance %	Comments
Labour	2281	1724.8	1210	515	-43%	
Project Management Costs (WPD)	813	601	477	-124	-26%	Contractors being used to cover internal resources. Budget Change Request addresses this.
WPD Design Team	1468	1124	733	-391	-53%	Contractors being used to cover internal resources. Budget Change Request addresses this.
Equipment	1679	1664	2009	345	17%	
Solution Design - Use Cases Review and finalise use cases	8	7	4	-2	-56%	
Solution Design - Use Cases Detailed desktop network design	56	44	29	-15	-52%	
Solution Design -Method infrastructure scenario investment model Design	8	7	4	-3	-73%	
Deploy intervention techniques Intervention technique 1 - Dynamic Asset Management	61	61	63	2	3%	
Deploy intervention techniques Intervention technique 2 - Automatic Load Transfer	12	12	11	-1	-7%	
Deploy intervention techniques Intervention technique 3 - Meshed Networks	138	138	129	-9	-7%	
Deploy intervention techniques Intervention technique 4 - Storage	1388	1388	1762	374	21%	Budget change request addresses this- costs within this category contain other items.
Operate Scenario Investment Model Deploy learning from intervention techniques to SIM	8	8	8	0	-5%	
Contractors	6012	5622	5449	-173	-3%	
Project Management Costs (Logica)	736	604	1097	493	45%	WPD Resources

						filled by
						Contractors, budget change request addresses this.
Solution Design - Use Cases Review and finalise use cases	240	215	219	4	2%	
Solution Design - Use Cases Detailed desktop network design	287	287	466	179	38%	
Solution Design -Method infrastructure scenario investment model Design	325	277	283	6	2%	
Scenario Investment Model Build Scenario Investment Model Software Development	244	233	237	5	2%	
Deploy monitoring equipment infrastructure Deploy IP infrastructure	6	262	6	-256	-4177%	
Deploy intervention techniques Intervention technique 1 - Dynamic Asset Management	3	3	3	0	2%	
Deploy intervention techniques Intervention technique 2 - Automatic Load Transfer	1671	1683	1717	35	2%	
Deploy intervention techniques Intervention technique 3 - Meshed Networks	73	66	67	1	2%	
Deploy intervention techniques Intervention technique 4 - Storage	336	153	156	3	2%	
Deploy intervention techniques Intervention technique 5 - Distributed Generation	44	34	35	1	2%	
Deploy intervention techniques Intervention technique 6 - Demand Side Management	86	71	73	1	2%	
Operate trials Intervention technique 2 - Automatic Load Transfer	24	23	23	0	2%	
Operate trials Intervention technique 3 - Meshed Networks	7	7	1	-6	-488%	
Operate trials Intervention technique 5 - Distributed Generation	90	87	50	-37	-75%	
Operate trials Intervention technique 6 - Demand Side Management	90	87	50	-37	-75%	
Operate Scenario Investment Model Gather intervention technique results	218	241	201	-40	-20%	
Operate Scenario Investment Model Assess Results	397	414	198	-216	-109%	
Operate Scenario Investment Model Deploy learning from intervention techniques to SIM	245	240	212	-28	-13%	
Operate modified trials Assess Results	56	56	10	-46	-488%	
Learning dissemination Market research with stakeholders	28	441	311	-130	-42%	Contract with Bath University
Learning dissemination Electronic media	49	10	0	-10	-4245%	terminated, more cost effective
Learning dissemination Workshops / seminars	302	35	5	-30	-539%	alternative for K,C&D now being

Learning dissemination FALCON Dissemination conferences	73	3	0	-2	-1072%	deployed compared to original spend
Learning dissemination Academic dissemination	120	35	9	-26	-280%	profile
Learning dissemination Other media	41	3	0	-2	-1016%	
Learning dissemination Reports	132	31	16	-15	-99%	
Learning dissemination Training	91	21	2	-19	-980%	
ІТ	2914	2476	2553	77	3%	
WPD IT Costs - Hardware and	72	61	54	-7	-13%	
connection	12	01	34	-/	-13/0	
Solution Design - Use Cases Detailed desktop network design	247	210	302	92	30%	
Scenario Investment Model Build	97	82	134	52	39%	
Hardware/Software purchase Deploy monitoring equipment		Ŭ-	-0.	<u> </u>		
infrastructure Deploy IP	1620	1377	1002	-375	-37%	Recently re-forecast Telecommunication
Deploy intervention techniques Intervention technique 1 - Dynamic Asset Management	133	113	163	50	31%	s expenditure has been reallocated within 'IT'; this will
Deploy intervention techniques Intervention technique 2 - Automatic Load Transfer	133	113	163	50	31%	be reflected by a subsequent decrease in the 'Labour' & 'Other' categories once the re-forecast costs have been resubmitted via the change request process.
Deploy intervention techniques Intervention technique 3 - Meshed Networks	133	113	163	50	31%	
Deploy intervention techniques Intervention technique 4 - Storage	133	113	163	50	31%	
Deploy intervention techniques Intervention technique 5 - Distributed Generation	135	115	165	50	30%	
Deploy intervention techniques Intervention technique 6 - Demand Side Management	173	147	221	74	34%	
Operate Scenario Investment Model Assess Results	35	30	22	-8	-34%	
Learning dissemination Market research with stakeholders	2	2	1	0	-26%	
IPR Costs	0	0	0	0	0%	
Travel & Expenses	329	280	290	9	3%	
Phase 1 - Solution Design	157	127	138	10	8%	
Phase 2 - Solution Build	124	108	118	10	9%	
Phase 3 - Trial Implementation	21	20	25	5	21%	
Learning Dissemination	28	25	23 8	- 17	-199%	
Payments to users	240	228	127	-101	-79%	
Operate modified trials Gather intervention technique results	240	228	127	-101	-79%	The remainder of budget to be spent over the 2014/15 Winter trials
	0	0	0	0	0%	
Contingency	0					
Contingency Decommissioning	0	0	0	0	0%	
				0 67		

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Phase 2 - Solution Build	95	90	136	45	33%	
Phase 3 - Trial Implementation	106	101	94	-7	-7%	
Learning dissemination	46	44	105	62	58%	
TOTAL	14123	12630	12340	-291	-2%	

Table 4 - Progress against budget

During the lifecycle of the project it has become increasingly apparent that the original budget structure was not suitable. It doesn't allow stakeholders to ascertain the underlying costs of each technique and some of the key elements were "bucketed" together with other line items making it complex for what was budgeted and where.

Clarity on costs is vital for the validation contained within the SIM so therefore we took a decision to construct a new budget based on the actual costs of each technique and what we had learnt to date. This has proven to be a large and time consuming exercise and whilst the new budget remains under discussion, we are confident that it is in the best interests of the project and stakeholders.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

5 Successful Delivery Reward Criteria (SDRC)

We had two SDRCs due in this period delivered on time at the end of 2014 – SDRC's 5 and 6.

SDRC	Status	Due Date	Comments
The Engineering Intervention	Green	31/12/2014	This was delivered on time.
Technique trials 1-4 will be			
deployed onto the network and			
the results loaded on the SIM (the			
outcomes of the trials will be used			
to modify the model, which feed			
into the SIM). The results will be			
analysed and available for			
dissemination by December 2014.			
The Commercial intervention	Green	31/12/2014	This was delivered on time.
technique trials will be deployed			
onto the network. The results will			
be analysed and dissemination by			
December 2014.			

Table 5

5.1 Future SDRCs

Table 5-1 captures the remaining SDRC for completion during the project life cycle. Work is well under way to plan out the various constituent parts of this SDRC as detailed in the tables below.

SDRC	Status	Due Date	Comments
Assess the suitability of the	Green	30/09/2015	We are well on track to
Method for mainstream adoption			complete this SDRC. There
and produce an			are a number of key
optimum investment plan by 30th			milestones and deliverables
September 2015.			contained within it and a
			summary is provided below
			for clarification

Table 5-1 - SDRCs to be completed

Milestone	Status
An optimised future business plan for the trials area will	Work to complete this is
be developed. We will be able to compare this plan with	underway.
the results of the updated run of the SIM outlined in	
criterion 9.4.	
We will obtain an understanding of key sensitivities of low	Will form part of the final
carbon uptake rates in a defined area and discuss these	report on data and load
with Ofgem to assist in the design of suitable regulatory	estimation.
mechanisms.	

Milestone	Status
As the intervention technique data becomes available the	Work on the future of the
SIM will be refined with multiple intervention techniques	SIM and options in under
deployments and iterations of the SIM.	discussion
We will continue to develop the future low carbon update	Will form part of the final
data, taking into account latest developments in	report on data and load
government policy and low carbon technology.	estimation.
The industry data will also continue to be enhanced	Will form part of the final
including the introduction of data from smart meters	report on data and load
installed in the trials area.	estimation.

Table 5-2 - Milestones to be completed

Criterion	Status
Improved Industry data will be documented and shared	Document under
with the industry.	construction.
An investment plan will be developed and operational	Document being developed.
manuals for each intervention technique will be	
developed and available for dissemination.	
A final report consolidating learning and the	Document being developed.
recommendations from the SIM will be developed and	
available for dissemination.	
Workshops will take place with other DNOs and	Under planning.
Government to explore how the SIM can inform network	
investment and policy (Milestone DE5).	
A final report consolidating all the learning from the	Document being developed.
project will be produced. This will included	
recommendation for follow on projects, if appropriate and	
lessons learnt from each phase of the project.	
A final project symposium to share the outputs of the SIM	Under planning.
will take place (Milestone DE6) and the findings and the	
outputs of the whole project will be shared.	

Table 5-3 – Criterion to be met

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

6 Learning Outcomes

Knowledge Capture and Dissemination (KC&D) continues to collect at the same pace as each workstream, with regular reviews continuing with key internal stakeholders and the Project Leads. Each Project Lead is now in the phase of collation of the final 6 months of learning all to be compiled and reported at the end of the project.

With the final few months now ahead of us, the emphasis remains on appropriate consultation and dissemination. We have a phased output of relevant and targeted reports and events to cover each workstream, as well as engaging in similar consultations with our colleagues in the industry to support collaborative industry efforts. We have already conducted the presentations and workshops presented in Section 1.7 of this document and aside from our main closing event, expected to be in October, after project closure, we will continue to remain engaged in appropriate events.

In terms of reporting, we are analysing the last pieces of data and continuing with the SIM runs in order to offer a complete suite of reports for each project area. The commercial trials results will be published first as they were drawn to a close early this year. We expect to issue these trials results in July, to compliment the interim report we issued the same time in 2014. The commercial techniques themselves will be included to some extent in the SIM final report as a potential modelling tool.

Internally, we have embarked on a period of dissemination to provide closing outputs for the project across the business. We also expect to produce a final piece in the company magazine Powerlines later this year which goes to all WPD staff, past and present. We are also arranging a business display of the interactive models at our two main sites, to ensure internal coverage of the project is at a maximum. This will also support the transition of both FALCON and newer low carbon alternatives into business as usual procedures.

Our learning outcomes have been collated and reflected under the seven broad categories as shown below:

Customer Engagement

This period has required limited customer engagement from the project outside the commercial trials. Much of our engagement in the past has been in relation to the build phases of the engineering trials and this was completed some time ago.

We have continued to work closely with local I&C consumers however, mainly those who were trials participants, both directly and indirectly recruited.

Some of our local stakeholder engagement does stretch to customer engagement as the nature of the local activities sees FALCON exposure to regional bill payers. For example, local Universities and Government bodies.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

Project Management, Procurement & Legal

We have learnt a lot about Programme and Project Management from FALCON. As our procurement and legal activities were complete in 2014, this reporting period does not have any new information to report, however, we will be producing a lessons learnt section on Project Management coming from FALCON which we will make available to interested stakeholders as part of the final reporting suite.

Construction Process

This period has seen little or no construction and focussed on trials activities alone.

Technology & Equipment

By the very nature of this project, we are always learning from technology and equipment. We continue to refine the telecoms infrastructure as new situations arise that are unpredictable. For example sudden extremes of weather or the development of new buildings not previously in line of sight, can affect individual signals. These are recorded and dealt with on a case by case basis to maintain maximum coverage.

We experience rare pieces of downtime on our storage sites, again, recorded and addressed on a case by case basis.

All of our learning will be shared in our closing reports.

People & Culture

We have a much higher awareness of FALCON across both the business and the industry now. Not only has our engagement spanned the UK industry, but we have also begun sharing information with interested parties from South East Asia (TNB – Malaysian electric utility), Turkey, Australia and North America.

Our last few months on the project will see more engagement with stakeholders and the summary of this document touches on some examples. We will also be continuing to consult with our colleagues in the DNO industry and policy makers as is necessary for our final SDRC.

Industry Processes & Regulations

The findings from FALCON are being used across two key areas – academia and industry. Both the academics involved directly on the project from Aston University, Cranfield University and The Open University have benefited, as well as industry groups, such the Energy Storage Operators Forum and the DSR Shared Services Group.

The findings from FALCON have also been used in the UK wide Good Practice Guide for storage on a DNO network.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

IT & Telecommunications

We have already provided some feedback on telecoms and our largest piece of IT software will be the SIM. The SIM is completing its final runs and we look forward to sharing the results in more depth as they become complete.

7 Intellectual Property Rights

There is no IPR generated or registered during this reporting period and it is not expected that we will register any IPR in the next period.

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

8 Risk Management

As stated in previous Reports, our risk management objectives are to:

- ensure that risk management is clearly and consistently integrated into the project management activities and evidenced through the project documentation;
- comply with WPDs risk management processes and any governance requirements as specified by Ofgem; and
- anticipate and respond to changing project requirements.

These objectives will be achieved by:

- ✓ defining the roles, responsibilities and reporting lines within the team for risk
 management
- ✓ including risk management issues when writing reports and considering decisions
- ✓ maintaining a risk register
- ✓ communicating risks and ensuring suitable training and supervision is provided
- ✓ preparing mitigation action plans
- ✓ preparing contingency action plans
- ✓ regular monitoring and updating of risks and the risk controls

8.1 Current Issues

There are no current issues to report and the project is now closing down many outstanding matters as we move into the closing months of the project.

8.2 Current Risks

The FALCON risk register is a live document and is updated regularly. There are currently 29 live project related risks. Mitigation action plans are identified when raising a risk and the appropriate steps then taken to ensure risks do not become issues wherever possible. In 8-1, we give details of our top five current risks by category and also those risks that we have been actively tracking since the last report. For each of these risks, a mitigation action plan has been identified and the progress of these are tracked and reported.

No new risks have occurred within the last reporting period.

Risk	Risk Rating	Mitigation Action Plan	Progress
There is a risk that when TDMS is delivered that it will not work in the way that the team envisaged.	Minor	We have a mitigation to get data back for the trials. Whilst TDMS was initially set out to be a single system solution, we have recognised that it is	Now that we are not progressing with a multiplatform TDMS this risk no longer presents a potential threat to the delivery.

Risk	Risk	Mitigation Action Plan	Progress
	Rating		
		harder to integrate it seamlessly in the timescales required. We ensured that we could obtain data by alternative mechanisms so as not to delay the trials and impact the SIM.	Update: Risk now closed
We are currently experiencing server maintenance matters for the Netspan system. The Netspan system provides an overview of the signal strength of the radio network . There is a risk that some data may be lost in the event of a failure at the data centre.	Minor	The FALCON Comms Network is relatively new and establishing the appropriate support arrangements is crucial. We are actively engaging with the internal stakeholders to ensure the level of support is provided for the trials. Data loss will be small in the event of an outage as the Project Team take backups periodically.	Steady progress has been made to make sure that the relevant support arrangements are in place and this is now under control. Update: Risk reduced and contingency measures have been in place. Network stable.
Requirements misunderstood or misinterpreted. There is a risk that the SIM requirements may have been misunderstood and that when the system goes live that this will only come to light then.	Moderate	Continual dialogue throughout the project with Users and other parties as well as ensuring that the team remains consistent throughout should mitigate this risk	This is always a risk in projects such as this, but we are confident that given the approach to date that this is being managed. We are using specialist consultants from CGI to treat this risk. User Acceptance Testing will also act as an early warning.
If trials equipment needs to be commissioned over WiMAX at a later date, the project will incur time additional resource costs and potentially additional support costs from Cisco	Minor	Ensure that Surf Telecoms are engaged so that handover from Cisco to Surf is achieved.	Cut over to the WiMAX solution for mesh operation will happen beyond FALCON timescales if justified.

Risk	Risk Rating	Mitigation Action Plan	Progress
(unless Surf have built up technical knowledge)			
The Energy Storage Systems may emit a noise, which is of a pitch that is unacceptable to customers in the vicinity of the installation.	Minor	We initially selected one site where we can test the devices and make any impact on the local community minimal.	We are installing and commissioning one site at a time to fully assess the impact of the noise. Three of the five sites chosen are away from customer premises, and therefore will have minimal impact. The remaining two are close to residential houses; these are now installed and we continue to monitor the situation. In parallel, we are looking at sound cancelling methods. More information will be provided on this in the final report, but this is
			now closed.
The technology used in the Project doesn't work	Minor	As the equipment is installed it may not deliver what we expect or it fails during testing	Detailed designs, descriptions and testing plans are or have been created. The Technical Design Architect owns the whole design and it's 'deliverability'. The test lab functionality ensures that we are able to test the equipment to be deployed on the network before field testing commences. We have ensured that there has

Risk	Risk	Mitigation Action Plan	Progress
The whole solution	Minor	There are a number of	been and will continue to be close liaison between suppliers, partners and WPD to develop a deliverable solution. We will not know this for certain until we have carried out our End to End testing. Update: This risk is now very much under, control, but is still monitored whilst we collect final bits of data. Detailed requirements
does not integrate effectively (For clarity, the whole solution may not integrate at a suitable level of quality in the time and cost constraints of the project)		solutions within the overall design and there is a risk that the whole solution might not work.	and designs have been developed in conjunction with impacted parties e.g. Cranfield University, TNEI and WPD IR. Interface specifications are being developed and reviewed as a technical community – members from project partners, the core project team and WPD. As stated previously the Technical Design Architect owns the whole design and it's 'deliverability'. Our testing and integration planning should ensure that this is tested robustly. Update: Risk is under monitoring as this may well come to fruition during the trials.

Risk	Risk	Mitigation Action Plan	Progress
Little or no uptake in commercial trials (techniques 5 & 6)	Rating Minor	There is a risk that, even with the expertise now recruited into the project team, customers are not interested in taking part in the trials, either due to not enough financial incentive or just not	Risk for T5 – demand turn down came to fruition in 2013 despite our best efforts. Generation customers (T6) had been very responsive, but demand response customers
		interested in the concept.	have failed to materialise for the last trial period. Update : Risk closed
Costs exceed the budget	Minor	There is a risk that as the technical design becomes more detailed and clearer, costs could increase	Continuous dialogue is taking place between all the technical partner/suppliers to ensure a common understanding of requirements, scope, budgetary constraints and the potential impact of scope creep. Keeping costs under a tight rein is crucial and so scope is considered as part of the Change Management process and, if costs could be impacted, it's escalated to the PRG for consideration and decision. We continue to keep this under monitoring.
			Update: the budget is well under control and whilst there is a change request under discussion this does not change the overall total. It is extremely unlikely that the budget will be exceeded.

Table 8-1 - Top five current risks (by rating)

REPORTING PERIOD: DECEMBER 2014 – MAY 2015

9 Consistency with Full Submission

The project remains consistent with the original submission for this period.

10 Accuracy Assurance Statement

This report has been prepared by the Future Networks Manager (Roger Hey), recommended by the Policy Manager (Paul Jewell) and approved by the Operations Director (Philip Swift).

All efforts have been made to ensure that the information contained within this report is accurate. WPD confirms that this report has been produced, reviewed and approved following our quality assurance process for external documents and reports.

