DNO COMMON NETWORK ASSET INDICES METHODOLOGY

01/07/2015

Health & Criticality - Draft Version 3

A common framework of definitions, principles and calculation methodologies, adopted across all GB Distribution Network Operators, for the assessment, forecasting and regulatory reporting of Asset Risk.

ACKNOWLEDGEMENTS

As Chair of the Network Asset Indices Methodology (AIM) Working Group, I wanted to express my sincere thanks to the following industry representatives who made this possible:

- Jonathan Booth (Electricity North West)
- Bob Wells (Electricity North West)
- David Seeds (Northern Ireland Electricity)
- Mary Black (Northern Powergrid)
- Gavin Howarth (Northern Powergrid)
- Mark Nicholson (Northern Powergrid)
- Gerard Boyd (Scottish Power)
- Peter Sherwood (Scottish Power)
- James Hurley (Scottish and Southern Energy Power Distribution)
- Rahul Sharma (Scottish and Southern Energy Power Distribution)
- John Smart (Scottish and Southern Energy Power Distribution)
- Ian Butler (UK Power Networks)
- Rob Friel (UK Power Networks)
- Phil Mann (Western Power Distribution)
- Dave Tighe (Western Power Distribution)

On behalf of the working group, I wanted to thank the following from Ofgem for their sponsorship, support and guidance; Chris Watts, Paul Branston and Martin Hughes.

Special thanks to Paul Barnfather from EA Technology Ltd and Barry Walker from Walker & Watts Ltd, who both made a significant contribution to the development and creation of the methodology and document.

Richard Wakelen (UK Power Networks)

Chair Network Asset Indices Methodology (AIM) Working Group

1st July 2015

PURPOSE OF DOCUMENT

This document sets out a common methodology for assessing condition based risk for electricity distribution assets. It has been developed by the six GB DNO groups in satisfaction of the requirements of Standard Condition 51 (SLC 51) of the electricity distribution licence for RIIO-ED1 (1 April 2015 to 31 March 2023).

The document sets out the overall process for assessing condition based risk and specifies the parameters, values and conditions to be used. The collective outputs of the assessment, used for regulatory reporting purposes, are known as the Network Asset Indices under the Common Network Asset Indices Methodology. The methodology can be amended subject to the change process outlined in SLC51.

When approved by Ofgem, this methodology will require DNOs to re-align their current processes and practices to this new standard. It will also require a re-basing of the Network Risk targets agreed between the DNOs and Ofgem for the RIIO-ED1 period under the provisions of CRC5D of the RIIO-ED1 licence.

When adopted, DNOs will be required to report annually against the targets set using the methodology. These reporting requirements are set down in Annex D to the RIIO-ED1 Regulatory Instructions and Guidance (RIGs).

Contents

ACKN	IOWLEDGEMENTS	1
PURP	OSE OF DOCUMENT	2
1. G	LOSSARY	10
2. A	CRONYMS	12
3. IN	ITRODUCTION	13
3.1	Network Asset Indices Methodology Objectives	13
3.2	Asset Health and Probability of Failure	14
3.3	Consequences of Failure and Asset Criticality	14
3.4	Regulatory Reporting of Network Asset Indices	14
3.5	Hierarchy of Asset Categories	
4. O'	VERVIEW OF COMMON NETWORK ASSET INDICES METHODOLOGY	20
4.1	Key Outputs	20
4.2	Definition of Failure	21
4.3	Evaluation of Current Asset Health and Probability of Failure	21
4.4	Evaluation of Future Asset Health and Probability of Failure	
4.5	Evaluation of Consequences of Failure	25
5. RI	ISK	26
5.1	Overview	
5.2	Risk Evaluation	
5.3	Risk Reporting	
	ROBABILITY OF FAILURE (POF)	
6.1	PoF Calculation (General)	
6.2	PoF Calculation (EHV and 132kV Transformers)	
6.3	PoF Calculation (Steel Towers)	
6.4	Location Factor (General)	
6.5	Location Factor (Submarine Cables)	
6.6	Duty Factor	
6.7	Health Score Modifier	
6.8	Health Score Modifier for EHV and 132kV Transformers	
6.9	Observed Condition Modifier	
6.10	Measured Condition Modifier	
6.11	Oil Test Modifier	
6.12	DGA Test Modifier	
6.13		
6.14	Reliability Modifier	69
7. C	ONSEQUENCES OF FAILURE	71
7.1	Overview	71
7.2	Reference Costs of Failure	73
7.3	Financial Consequences	75

7.4 Safety Consequences	76
7.5 Environmental Consequences	79
7.6 Network Performance Consequences	82
8. REFERENCES	89
APPENDIX A: FUNCTIONAL FAILURE DEFINITIONS	90
APPENDIX B: CALIBRATION – PROBABILITY OF FAILURE	98
B.1 Normal Expected Life	99
B.2 PoF Curve Parameters	103
B.3 Location Factor	103
B.4 Duty Factor	
B.5 Observed Condition Factors	106
B.6 Measured Condition Factors	126
B.7 Oil Test Modifier	139
B.8 DGA Test Modifier	140
B.9 Ageing Reduction Factor	141
APPENDIX C: INTERVENTIONS	142
APPENDIX D: CALIBRATION - CONSEQUENCES OF FAILURE	150
D.1 Financial	
D.2 Safety	
D.3 Environmental	
D.4 Network Performance	

List of Figures

20
26
27
30
31
35
37
40
43
45
47
49
53
54
61
65
66
68
69
71
72
75
77
80
82
83
84
87
46
16
18
18 18
18 18 27
18 15 27
182728

Table 27: Combined Wave & Current	Energy Factor	.105
	- Cables	
Table 29: Duty Factor Lookup Table -	- Switchgear	105
Table 30: Duty Factor Lookup Table -	- Distribution Transformers	105
Table 31: Duty Factor Lookup Tables	- Grid & Primary Transformers	106
Table 32: Observed Condition Input -	LV UGB: Steel Cover & Pit Condition	107
Table 33: Observed Condition Input -	LV UGB: Water / Moisture	107
•	LV UGB: Bell Condition	
	LV UGB: Insulation Condition	
•	LV UGB: Signs of Heating	
	LV UGB: Phase Barriers	
	LV Circuit Breaker: External Condition	
	LV Board (WM): Switchgear External Condition	
	LV Board (WM): Compound Leaks	
	LV Board (WM): Switchgear Internal Condition & Operation	
	LV Pillars: Switchgear External Condition	
	LV Pillars: Compound Leaks	
	LV Pillars: Switchgear Internal Condition & Operation	
	LV Pillars: Insulation Condition	
Table 46: Observed Condition Input -	LV Pillars: Signs of Heating	109
Table 47: Observed Condition Input -	LV Pillars: Phase Barriers	100
	HV Switchgear (GM) - Primary: Switchgear External Condition	
	HV Switchgear (GM) - Primary: Oil Leaks / Gas Pressure	
	HV Switchgear (GM) - Primary: Thermographic Assessment	
	HV Switchgear (GM) - Primary: Switchgear Internal Condition & Operation	
	HV Switchgear (GM) - Primary: Indoor Environment	
	HV Switchgear (GM) - Distribution: Switchgear External Condition	
	HV Switchgear (GM) - Distribution: Oil Leaks / Gas Pressure	
	HV Switchgear (GM) - Distribution: Thermographic Assessment	
	HV Switchgear (GM) - Distribution: Switchgear Internal Condition & Operation	
	HV Switchgear (GM) - Distribution: Indoor Environment	
	EHV Switchgear (GM): Switchgear External Condition	
	EHV Switchgear (GM): Oil Leaks / Gas Pressure	
	EHV Switchgear (GM): Thermographic Assessment	
	EHV Switchgear (GM): Switchgear Internal Condition & Operation	
	EHV Switchgear (GM): Indoor Environment	
	EHV Switchgear (GM): Support Structures	
	132kV Switchgear (GM): Switchgear External Condition	
	132kV Switchgear (GM): Switchgear External Condition	
	132kV Switchgear (GM): Thermographic Assessment	
	132kV Switchgear (GM): Switchgear Internal Condition & Operation	
	132kV Switchgear (GM): Switchgear Internal Condition & Operation	
·		
	132kV Switchgear (GM): Support Structures	
	132kV Switchgear (GM): Air Systems	
	HV Transformer (GM): Transformer External Condition	
Table 72: Observed Condition Input -	EHV Transformer (GM): Main Tank Condition	115
	EHV Transformer (GM): Coolers / Radiator Condition	
	EHV Transformer (GM): Bushings Condition	
	EHV Transformer (GM): Kiosk Condition	
	EHV Transformer (GM): Cable Boxes Condition	
	EHV Transformer (GM): Tapchanger External Condition	
	EHV Transformer (GM): Internal Condition	
· · · · · · · · · · · · · · · · · · ·	EHV Transformer (GM): Drive Mechanism Condition	
	EHV Transformer (GM): Condition of Selector & Divertor Contacts	
	EHV Transformer (GM): Condition of Selector & Divertor Braids	
	132kV Transformer (GM): Main Tank Condition	
	132kV Transformer (GM): Coolers / Radiator Condition	
	132kV Transformer (GM): Bushings Condition	
	132kV Transformer (GM): Kiosk Condition	
	132kV Transformer (GM): Cable Boxes Condition	
	132kV Transformer (GM): Tapchanger External Condition	
	132kV Transformer (GM): Internal Condition	
· · · · · · · · · · · · · · · · · · ·	132kV Transformer (GM): Drive Mechanism Condition	
	132kV Transformer (GM): Condition of Selector & Divertor Contacts	
Table 91: Observed Condition Input -	132kV Transformer (GM): Condition of Selector & Divertor Braids	118

Table 92: Observed Condition Input - Submarine Cable: External Condition Armour	119
Table 93: Observed Condition Input - LV Pole: Visual Pole Condition	119
Table 94: Observed Condition Input - LV Pole: Pole Top Rot	
Table 95: Observed Condition Input - LV Pole: Pole Leaning	
Table 96: Observed Condition Input - LV Pole: Bird / Animal Damage	
Table 97: Observed Condition Input - HV Pole: Visual Pole Condition	
Table 98: Observed Condition Input - HV Pole: Visual Pole Condition: Pole Top Rot	
Table 99: Observed Condition Input - HV Pole: Pole Leaning	
Table 100: Observed Condition Input - HV Pole: Bird / Animal Damage	
Table 101: Observed Condition Input - EHV Pole: Visual Pole Condition	
Table 102: Observed Condition Input - EHV Pole: Pole Top Rot	
Table 103: Observed Condition Input - EHV Pole: Pole Leaning	
Table 104: Observed Condition Input - EHV Pole: Bird / Animal Damage	
Table 105: Observed Condition Input - EHV Toke: Bird / Arithral Damage	
Table 106: Observed Condition Input - EHV Tower: Bracings	
Table 107: Observed Condition Input - EHV Tower: Bracings	
Table 107: Observed Condition Input - EHV Tower: Crossams	
Table 106. Observed Condition Input - EHV Tower: Peak Table 109: Observed Condition Input - EHV Tower: Paintwork Condition	
Table 110: Observed Condition Input - EHV Tower: Foundation Condition	
Table 111: Observed Condition Input - 132kV Tower: Tower Legs	
Table 112: Observed Condition Input - 132kV Tower: Bracings	
Table 113: Observed Condition Input - 132kV Tower: Crossarms	
Table 114: Observed Condition Input - 132kV Tower: Peak	
Table 115: Observed Condition Input - 132kV Tower: Paintwork Condition	
Table 116: Observed Condition Input - 132kV Tower: Foundation Condition	
Table 117: Observed Condition Input - EHV Fittings: Tower Fittings Condition	
Table 118: Observed Condition Input - EHV Fittings: Conductor Fittings Condition	
Table 119: Observed Condition Input - EHV Fittings: Insulators - Electrical Condition	
Table 120: Observed Condition Input - EHV Fittings: Insulators - Mechanical Condition	
Table 121: Observed Condition Input - 132kV Fittings: Tower Fittings Condition	
Table 122: Observed Condition Input - 132kV Fittings: Conductor Fittings Condition	
Table 123: Observed Condition Input - 132kV Fittings: Insulators - Electrical Condition	
Table 124: Observed Condition Input - 132kV Fittings: Insulators - Mechanical Condition	
Table 125: Observed Condition Input - EHV Tower Line Conductor: Visual Condition	125
Table 126: Observed Condition Input - EHV Tower Line Conductor: Midspan Joints	125
Table 127: Observed Condition Input - 132kV Tower Line Conductor: Visual Condition	125
Table 128: Observed Condition Input - 132kV Tower Line Conductor: Midspan Joints	126
Table 129: Measured Condition Input - LV UGB: Operational Adequacy	126
Table 130: Measured Condition Input - LV Circuit Breaker: Operational Adequacy	126
Table 131: Measured Condition Input - LV Board (WM): Operational Adequacy	127
Table 132: Measured Condition Input - LV Board (WM): Security	
Table 133: Measured Condition Input - LV Pillar: Operational Adequacy	
Table 134: Measured Condition Input - HV Switchgear (GM) - Primary: Partial Discharge	
Table 135: Measured Condition Input - HV Switchgear (GM) - Primary: Ductor Test	
Table 136: Measured Condition Input - HV Switchgear (GM) - Primary: IR Test	
Table 137: Measured Condition Input - HV Switchgear (GM) - Primary: Oil Tests	
Table 138: Measured Condition Input - HV Switchgear (GM) - Primary: Temperature Readings	
Table 139: Measured Condition Input - HV Switchgear (GM) - Primary: Trip Test	
Table 140: Measured Condition Input - HV Switchgear (GM) - Distribution: Partial Discharge	
Table 141: Measured Condition Input - HV Switchgear (GM) - Distribution: Ductor Test	
Table 142: Measured Condition Input - HV Switchgear (GM) - Distribution: Oil Tests	
Table 142: Measured Condition Input - HV Switchgear (GM) - Distribution: Temperature Readings	
Table 143: Measured Condition Input - HV Switchgear (GM) - Distribution: Trip Test	
Table 144: Measured Condition Input - HV Switchgear (GM): Distribution: Trip Test	
Table 146: Measured Condition Input - EHV Switchgear (GM): Ductor Test	
Table 147: Measured Condition Input - EHV Switchgear (GM): IR Test	
Table 148: Measured Condition Input - EHV Switchgear (GM): Oil Tests / Gas Tests	
Table 149: Measured Condition Input - EHV Switchgear (GM): Temperature Readings	
Table 150: Measured Condition Input - EHV Switchgear (GM): Trip Test	
Table 151: Measured Condition Input - 132kV Switchgear (GM): Partial Discharge	
Table 152: Measured Condition Input - 132kV Switchgear (GM): Ductor Test	
Table 153: Measured Condition Input - 132kV Switchgear (GM): IR Test	130
Table 154: Measured Condition Input - 132kV Switchgear (GM): Oil Tests / Gas Tests	
Table 155: Measured Condition Input - 132kV Switchgear (GM): Temperature Readings	
Table 156: Measured Condition Input - 132kV Switchgear (GM): Trip Test	131

	Measured Condition Input - HV Transformer (GM): Partial Discharge1	31
Table 158:	Measured Condition Input - HV Transformer (GM): Oil Acidity1	31
Table 159:	Measured Condition Input - HV Transformer (GM): Temperature Readings	31
Table 160:	Measured Condition Input - EHV Transformer (GM): Main Transformer Partial Discharge	32
Table 161:	Measured Condition Input - EHV Transformer (GM): Temperature Readings	32
	Measured Condition Input - EHV Transformer (GM): Tapchanger Partial Discharge	
	Measured Condition Input - 132kV Transformer (GM): Main Transformer Partial Discharge	
	Measured Condition Input - 132kV Transformer (GM): Temperature Readings	
	Measured Condition Input - 132kV Transformer (GM): Tapchanger Partial Discharge	
	Measured Condition Input - EHV Cable (Non Pressurised): Sheath Test	
	Measured Condition Input - EHV Cable (Non Pressurised): Partial Discharge	
	Measured Condition Input - EHV Cable (Non Pressurised): Fault History	
	Measured Condition Input - EHV Cable (Noil Fressurised): Fault Fristory	
	· · · · · · · · · · · · · · · · · · ·	
	Measured Condition Input - EHV Cable (Oil): Leakage	
	Measured Condition Input - EHV Cable (Gas): Partial Discharge	
	Measured Condition Input - EHV Cable (Gas): Leakage	
	Measured Condition Input - 132kV Cable (Non Pressurised): Sheath Test	
	Measured Condition Input - 132kV Cable (Non Pressurised): Partial Discharge	
	Measured Condition Input - 132kV Cable (Non Pressurised): Fault History1	
	Measured Condition Input - 132kV Cable (Oil): Partial Discharge	
Table 177:	Measured Condition Input - 132kV Cable (Oil): Leakage1	35
Table 178:	Measured Condition Input - 132kV Cable (Gas): Partial Discharge	35
Table 179:	Measured Condition Input - 132kV Cable (Gas): Leakage	35
Table 180:	Measured Condition Input - Submarine Cable: Sheath Test	36
Table 181:	Measured Condition Input - Submarine Cable: Partial Discharge	36
	Measured Condition Input - Submarine Cable: Fault History	
	Measured Condition Input - LV Pole: Pole Decay / Deterioration	
	Measured Condition Input - HV Pole: Pole Decay / Deterioration	
	Measured Condition Input - EHV Pole: Pole Decay / Deterioration	
	Measured Condition Input - EHV Fittings: Thermal Imaging	
	Measured Condition Input - EHV Fittings: Ductor Test	
	Measured Condition Input - 132kV Fittings: Thermal Imaging	
Table 100.	Nieasureu Condition imput - 132kV i ittings. Thermal imaging	21
	Moscured Condition Input 122k/ Fittings: Duotor Tost	
	Measured Condition Input - 132kV Fittings: Ductor Test	
Table 190:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling1	38
Table 190: Table 191:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38
Table 190: Table 191: Table 192:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38
Table 190: Table 191: Table 192: Table 193:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 38
Table 190: Table 191: Table 192: Table 193: Table 194:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1	38 38 38 38
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 38 39 39
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1	38 38 38 39 39
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196: Table 197:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1 Oil Test Factor Calibration. 1	38 38 38 39 39 39
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196: Table 197:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1	38 38 38 39 39 39
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1 Oil Test Factor Calibration. 1 Oil Test Collar Calibration 1 Hydrogen Condition State Calibration 1	38 38 38 39 39 39 39 40
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1 Oil Test Factor Calibration. 1 Oil Test Collar Calibration. 1	38 38 38 39 39 39 39 40
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1 Oil Test Factor Calibration. 1 Oil Test Collar Calibration 1 Hydrogen Condition State Calibration 1	38 38 38 39 39 39 40 40
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200: Table 201:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey. 1 Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling. 1 Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey. 1 Moisture Condition State Calibration. 1 Acidity Condition State Calibration. 1 Breakdown Strength Condition State Calibration. 1 Oil Test Factor Calibration. 1 Oil Test Collar Calibration 1 Hydrogen Condition State Calibration 1 Methane Condition State Calibration 1	38 38 38 39 39 39 40 40 40
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200: Table 201: Table 202:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey.1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey.1Moisture Condition State Calibration.1Acidity Condition State Calibration.1Breakdown Strength Condition State Calibration.1Oil Test Factor Calibration.1Oil Test Collar Calibration.1Hydrogen Condition State Calibration.1Methane Condition State Calibration.1Ethylene Condition State Calibration.1Ethane Condition State Calibration.1	38 38 38 39 39 39 40 40 40 40
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200: Table 201: Table 202: Table 203:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey1Moisture Condition State Calibration1Acidity Condition State Calibration1Breakdown Strength Condition State Calibration1Oil Test Factor Calibration1Oil Test Collar Calibration1Hydrogen Condition State Calibration1Methane Condition State Calibration1Ethylene Condition State Calibration1Ethane Condition State Calibration1Acetylene Condition State Calibration1Acetylene Condition State Calibration1	38 38 38 39 39 39 40 40 40 40 40
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200: Table 201: Table 202: Table 203: Table 204:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey.1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey.1Moisture Condition State Calibration.1Acidity Condition State Calibration.1Oil Test Factor Calibration.1Oil Test Collar Calibration.1Hydrogen Condition State Calibration.1Methane Condition State Calibration.1Ethylene Condition State Calibration.1Ethane Condition State Calibration.1Acetylene Condition State Calibration.1Acetylene Condition State Calibration.1DGA Change Category Calibration.1	38 38 38 39 39 39 40 40 40 40 40 40
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 199: Table 200: Table 201: Table 202: Table 203: Table 204: Table 205:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey1Moisture Condition State Calibration1Acidity Condition State Calibration1Breakdown Strength Condition State Calibration1Oil Test Factor Calibration1Oil Test Collar Calibration1Hydrogen Condition State Calibration1Methane Condition State Calibration1Ethylene Condition State Calibration1Ethane Condition State Calibration1Acetylene Condition State Calibration1Acetylene Condition State Calibration1DGA Change Category Calibration1DGA Test Factor Calibration1	38 38 38 39 39 39 40 40 40 40 40 40 41
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 202: Table 203: Table 204: Table 205: Table 205:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey1Moisture Condition State Calibration1Acidity Condition State Calibration1Breakdown Strength Condition State Calibration1Oil Test Factor Calibration1Uil Test Collar Calibration1Hydrogen Condition State Calibration1Methane Condition State Calibration1Ethylene Condition State Calibration1Acetylene Condition State Calibration1Acetylene Condition State Calibration1DGA Change Category Calibration1DGA Test Factor Calibration1Ageing Reduction Factor1	38 38 38 39 39 39 40 40 40 40 40 41 41
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 200: Table 201: Table 202: Table 203: Table 204: Table 205: Table 206: Table 207:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey1Moisture Condition State Calibration1Acidity Condition State Calibration1Breakdown Strength Condition State Calibration1Oil Test Factor Calibration1Uil Test Collar Calibration1Hydrogen Condition State Calibration1Methane Condition State Calibration1Ethylene Condition State Calibration1Acetylene Condition State Calibration1Acetylene Condition State Calibration1DGA Change Category Calibration1DGA Test Factor Calibration1Ageing Reduction Factor1Input Data Affected by Refurbishment Interventions1	38 38 38 39 39 39 40 40 40 40 41 41 43
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 198: Table 200: Table 201: Table 202: Table 203: Table 204: Table 205: Table 205: Table 207: Table 207:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey.1Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling.1Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey.1Moisture Condition State Calibration.1Acidity Condition State Calibration.1Breakdown Strength Condition State Calibration.1Oil Test Factor Calibration.1Oil Test Collar Calibration.1Hydrogen Condition State Calibration.1Methane Condition State Calibration.1Ethylene Condition State Calibration.11 Ethylene Condition State Calibration.11 Acetylene Condition State Calibration.11 Ageing Reduction Factor.11 Ageing Reduction Factor.11 Input Data Affected by Refurbishment Interventions.11 Reference Financial Cost of Failure.1	38 38 38 39 39 39 40 40 40 40 41 41 43 52
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 202: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 208: Table 208: Table 209:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 52
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 202: Table 203: Table 205: Table 205: Table 207: Table 207: Table 207: Table 208: Table 209: Table 209:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 41 41 43 54 55
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 208: Table 209: Table 209: Table 201: Table 207: Table 207: Table 207: Table 208: Table 209: Table 209: Table 201:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 41 41 43 52 54 55
Table 190: Table 191: Table 192: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 208: Table 209: Table 209: Table 210: Table 210:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 43 55 56 57 58
Table 190: Table 191: Table 192: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 207: Table 208: Table 209: Table 210: Table 210: Table 211: Table 211: Table 212: Table 213:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 58
Table 190: Table 191: Table 192: Table 193: Table 194: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 208: Table 209: Table 210: Table 210: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 58 59
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 197: Table 198: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 208: Table 210: Table 210: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215: Table 216:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 58 60
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 209: Table 201: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215: Table 216: Table 217:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 58 60 60
Table 190: Table 191: Table 193: Table 194: Table 195: Table 196: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 209: Table 201: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215: Table 216: Table 217:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 58 60 60
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 197: Table 199: Table 200: Table 201: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 208: Table 210: Table 210: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215: Table 216: Table 217: Table 217: Table 218:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 39 40 40 40 40 41 41 43 55 56 57 56 60 60 60
Table 190: Table 191: Table 192: Table 193: Table 194: Table 195: Table 197: Table 197: Table 199: Table 200: Table 201: Table 203: Table 204: Table 205: Table 206: Table 207: Table 207: Table 208: Table 210: Table 210: Table 211: Table 211: Table 212: Table 213: Table 214: Table 215: Table 216: Table 217: Table 217: Table 218: Table 219:	Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	38 38 38 39 39 40 40 40 40 41 41 43 52 54 55 60 60 61

Draft V3 DNO Common Network Asset Indices Methodology

Table 222: Type Enviromental Factor	164
Table 223: Size Environmental Factor	
Table 224: Location Environmental Factor	16
Table 225: Costs Used in Derivation of Network Performance Reference Cost of Failure	166
Table 226: Reference Network Performance Cost of Failure for LV & HV assets	166
Table 227: Reference Network Performance Cost of Failure for EHV & 132kV assets (Secure)	168

1. GLOSSARY

Term	Definition	
Ageing Rate	A parameter that describes the rate of deterioration of Asset Health with age.	
Asset Category	A generic term to describe a group of asset types where a particular input, calculation or calibration within the Common Network Asset Indices Methodology is common.	
Asset Health		
Asset Register Category	Groupings of asset type that are used in reporting the asset population in Ofgem's RIIO-ED1 RIGs - Cost & Volumes. Asset Register Categories are used as Asset Categories within this document, where appropriate.	
Asset Replacement	An activity defined in Ofgem's RIIO-ED1 Regulatory Instructions and Guidance: Annex A – Glossary to remove an existing asset(s) and install a new asset.	
Average Overall Consequence of Failure	The mean average of the Overall Consequence of Failure for all assets within the same Health Index Asset Category.	
Catastrophic Failure	A sudden or total functional failure of an asset (or a subcomponent), from which recovery of the asset (and/ or sub component) is impossible.	
Condition Based Functional Failure	The inability of an asset to perform its required function, as a consequence of the condition of asset. This includes:	
Condition Cap	A maximum limit of Health Score, which forms part of a Condition Modifier.	
Condition Collar	A minimum limit of Health Score, which forms part of a Condition Modifier.	
Condition Factor	A Factor, which forms part of a Condition Modifier.	
Condition Input	Result of an observation or test, used to evaluate the health of an asset.	
Condition Input Cap	A maximum limit of Health Score associated with a particular Condition Input.	
Condition Input Collar	A minimum limit of Health Score associated with a particular Condition Input.	
Condition Input Factor	A Factor associated with a particular Condition Input.	
Condition Modifier	A Modifier based upon a set of observed or measured Condition Inputs.	
Consequence Categories	Catagories relating to the different areas that may be impacted by asset failure. The catagories	
Consequences Factor	A Factor applied to the Reference Cost of Failure in order to determine the Consequences of Failure of an asset.	
Consequences of Failure	The impact of Condition Based Functional Failure of an asset.	
This is a framework for collating information on the Consequences of Failure of distribution and for tracking changes over time. The Criticality Index is a comparative measure of Consequence of Failure. For a particular ass Criticality Index is provided by: the location of the asset within the Criticality Index Bands; and the Average Overall Consequence of Failure, for the relevant Health Index Category		
Criticality Index Banding Criteria	The criteria used to define the Criticality Index Bands, expressed as a percentage of the Average Overall Consequence of Failure for each Health Index Asset Category.	
Criticality Index Bands	Bandings used for the reporting of the Overall Consequence of Failure for individual assets, relative to the Average Overall Consequence of Failure for assets in the same Health Index Category.	
Current Health Score	The Health Score calculated for an asset that represents the Asset Health at the time (i.e. in the year) of calculation.	
Degraded Failure	A functional failure of an asset (or a subcomponent), from which the asset (and/ or sub component) can be restored, but it may not be cost effective to do so.	
DGA Test Modifier	A Condition Modifier applied to EHV Transformer and 132kV Transformer assets, based upon the results of dissolved gas analysis.	
Duty Factor	A Factor representing the effect that duty has upon the Expected Life of an asset.	
Expected Life	The time (in years) in an asset's life when it would be expected to first observe significant deterioration (Health Score 5.5), taking into consideration location or duty, in addition to the asset type.	
Factor	A multiplication value, varying around unity.	
FFA Test Modifier	A Condition Modifier applied to EHV Transformer and 132kV Transformer assets, based upon measurements of furfuraldehyde (FFA) in oil.	
Future Health Score	The Health Score(s) calculated for an asset that represents the Asset Health in any year beyond the current year.	

Term	Definition	
Health Index	A framework for collating information on the Asset Health of distribution assets. This framework shall enable: tracking of changes in Asset Health over time; and identification of the Probability of Failure associated with the asset condition. For a particular asset, the reported Health Index is provided by the location of the asset within the Health Index Bands.	
Health Index Asset Category	Asset categorisations, used within the Network Assets Workbook, for which DNOs have agreed Secondary Deliverables. Health Index Asset Categories are used as Asset Categories within this document, where appropriate.	
Health Index Banding Criteria	The criteria used to define the Health Index Bands.	
Health Index Bands	Bandings used for the reporting of the Health Indices for individual assets, based upon the Probability of Failure indicated by each assets health and condition.	
Health Score	A numerical value representing a measure of Asset Health.	
Health Score Cap	A maximum limit applied to the Health Score, associated with a particular condition point.	
Health Score Collar	A minimum limit applied to the Health Score, associated with a particular condition point.	
Health Score Factor	A Factor based on one or more Condition Modifiers.	
Health Score Modifier	A Modifier applied to the Initial Health Score of assets.	
Incipient Failure	A functional failure of an asset (or a subcomponent), which if unaddressed may lead to a degraded or catastrophic failure.	
Initial Health Score	The Health Score calculated for an asset, based solely on age based criteria.	
Location Factor	A Factor representing the effect that the environment, in which the asset is installed, has upon it's Expected Life.	
Measured Condition Input	A Condition Input associated with the measured condition of an asset	
Methodology	For the purposes of this document, the Methodology means the Common Network Asset Indices Methodology.	
Modifier	A value derived from factors, used to modify a base value within the Asset Health calculation.	
Network Asset Secondary Deliverables	Secondary Deliverables relating to Asset Health, criticality and risk, as defined for the RIIO-ED1 period in Standard Condition 51 of the electricity distribution licence.	
Normal Expected Life	The time (in years) in an asset's life when it would be expected to first observe significant deterioration (Health Score 5.5), based upon consideration of the asset type alone.	
Observed Condition Input	A Condition Input associated with the observed condition of an asset	
Oil Test Modifier	A Condition Modifier applied to EHV Transformer and 132kV Transformer assets, based upon oil test measurements.	
Overall Consequence of Failure	The total Consequence of Failure for an asset, taking account of the Consequences of Failure in al Consequence Categories.	
Probability of Failure	The likelihood of a Condition Based Functional Failure occurring (per annum).	
Reference Costs of Failure		
Refurbishment	A one-off activity, defined in Ofgem's RIIO-ED1 Regulatory Instructions and Guidance: Annex A – Glossary that is undertaken on an asset that is deemed to be close to end of life or is otherwise not fit for purpose that extends the life of that asset or restores its functionality.	
Reliability Collar	A minimum limit of Health Score, which forms part of a Reliability Modifier.	
Reliability Factor	A Factor, which forms part of a Reliability Modifier.	
Reliability Modifier	A Modifier applied (at individual DNO discretion) to the Current Health Score of assets.	
Risk Index	Has the meaning given in Standard Condition 51 of the electricity distribution licence.	
Risk Matrix	The 5x4 matrix formed by the Health Index and Criticality Index respectively	

2. ACRONYMS

Acronym	Description	
AAAC	All Aluminium Alloy Conductors	
ACB	Air Circuit Breaker	
ACSR	Aluminium Conductor Steel Reinforced	
Cad Cu	Cadmium Copper	
CI	Customer Interruption	
CML	Customer Minutes Lost	
CMR	Continuous Maximum Rating	
CoF	Consequence of Failure	
CRC	Charge Restriction Condition	
DGA	Dissolved Gas Analysis	
DIN	Dangerous Incident Notification	
DNO	Distribution Network Operator	
DP	Degree of Polymerisation	
DPCR5	Distribution Price Control Review for five years from 1 April 2010 to 31 March 2015	
EHV	Extra High Voltage	
ENA	Energy Networks Association	
EOL	End of Life	
ESQCR	Electricity, Safety, Quality and Continuity Regulations 2002	
FFA	Furfuraldehyde	
FFC	Fluid Filled Cable	
GB	Great Britain	
GM	Ground Mounted	
HI	Health Index	
HSE	Health and Safety Executive or Health, Safety and Environment	
HV		
ID	High Voltage Indoor	
IIS	Interruption Incentive Scheme	
IR	Insulation Resistance Kilovolt	
kV		
LV	Low Voltage	
LV UGB	Low Voltage Underground Board (Link Box)	
MMI	Modified Maximum and Increment	
MVA	Megavolt Ampere	
NaFIRS	National Fault and Interruption Reporting Scheme	
NEDeRs	National Equipment Defect Reporting Scheme	
OD	Outdoor	
Ofgem	Office of Gas and Electricity Markets	
OHL	Overhead Line	
PoF	Probability of Failure	
RIG	Regulatory Instructions and Guidance	
RIIO	Revenue = Incentive + Innovation + Outputs (Ofgem's price control framework first implemented in 2013)	
RIIO-ED1	First price control for Electricity Distribution companies under the RIIO framework. Covers period from 1 April 2015 to 31 March 2023	
RMU	Ring Main Unit	
SDI	Secondary Deliverable Intervention	
SF ₆	Sulphur Hexafluoride	
SLC	Standard Licence Condition	
SOP	Suspension of Operational Practice	
VSL	Value of Statistical Life	
WM	Wall Mounted	

3. INTRODUCTION

For RIIO-ED1, which runs from 1 April 2015 to 31 March 2023, Ofgem has introduced regulatory reporting requirements for GB DNOs to report information relating to both asset health and criticality. This information is known as the Network Asset Indices, and these provide an indication of the risk of condition based failure of network assets.

The requirement for reporting of Network Asset Indices is outlined in Standard Licence Condition 51. This licence condition also requires DNOs to jointly develop a Common Network Asset Indices Methodology, such that DNOs adopt a common approach to the reporting of indices that measure Asset Health and Criticality.

This document details the Common Network Asset Indices Methodology (herein referred to as "the Methodology") to be applied.

In RIIO-ED1, DNOs have Network Asset Secondary Deliverables relating to Network Asset Indices. These relate to the improvement in risk that is delivered by Asset Replacement, as well as some Refurbishment activities. Such activities are referred to as Interventions.

The Asset Categories where Network Asset Secondary Deliverables have been agreed as part of the RIIO ED1 settlement may differ between DNOs. Each DNO is only required to report Network Asset Indices for Asset Categories where they have agreed Secondary Deliverables. Consequently, DNOs shall only need to implement the Common Network Asset Indices Methodology for those Asset Categories where they are required to report Network Asset Indices. This methodology covers all Asset Categories that have been agreed.

3.1 Network Asset Indices Methodology Objectives

Standard Licence Condition 51 Part D states the following:

The Network Asset Indices Methodology Objectives are that compliance with the Common Network Asset Indices Methodology will enable:

- a) the comparative analysis of performance between Distribution Network Operators and over time:
- b) the assessment of the licensee's delivery of the Network Asset Secondary Deliverables;
- c) the communication of information affecting the Network Asset Secondary Deliverables between the licensee, the Authority and, as appropriate, other interested parties in a transparent manner.

The Methodology details the inputs, calculations and calibration parameters to be used in the calculation of Asset Health and criticality. This means that, where the Methodology is applied, a common output shall be determined for a common set of input data. This facilitates use of the output for comparative analysis. For the avoidance of doubt, all values for parameters outlined within this document are fixed and shall be adhered to in the application of the Methodology.

The communication of information relating to the Network Asset Secondary Deliverables, and their delivery, shall be through risk matrices (showing Asset Health and Criticality). These are required for regulatory reporting purposes. The output from the Methodology will be used for the population of these risk matrices.

3.2 Asset Health and Probability of Failure

Asset Health is a measure of the condition of an asset and the proximity to the end of its useful life. The Methodology includes a common methodology for the calculation of Asset Health for individual assets. This includes:-

- i) current Asset Health informed by observed and measured condition factors; and
- ii) future Asset Health, using assumptions regarding the likely future deterioration in Asset Health.

In order to take account of future deterioration it is necessary for the Methodology to:-

- i) include some age based elements within the calculation of Asset Health; and
- ii) use a continuous Health Score scale for the evaluation of Asset Health.

As the health of an asset deteriorates (i.e. its condition worsens), the likelihood that it will fail due to condition increases.

The Methodology relates Asset Health to the associated probability of condition based failure (Probability of Failure). For each asset type, the Methodology specifies the exact relationship between Health Score and Probability of Failure. Therefore Asset Health can equally be expressed in terms of Probability of Failure.

3.3 Consequences of Failure and Asset Criticality

When an asset fails, there will be an associated impact resulting from that failure. For example, there could be a loss of supply to customers, or an injury, resulting from a failure. Such impacts are referred to as Consequences of Failure.

The Methodology includes a common methodology for the evaluation of the likely Consequences of Failure, associated with the condition based failure of individual assets. Monetised values are determined for all Consequences of Failure in £ (at 2012/13 prices).

The criticality of an asset is a relative measure of its Consequences of Failure compared with those of other assets.

3.4 Regulatory Reporting of Network Asset Indices

For each asset, the Methodology shall determine:-

- i) the Probability of Failure (per annum) and
- ii) the Consequences of Failure (£)

associated with condition based failures. This information is used for the regulatory reporting of the Network Asset Indices for each asset.

The Network Asset Indices comprise three components:-

- i) Health Index which relates to Asset Health and Probability of Failure;
- ii) Criticality Index which relates to Consequences of Failure; and
- iii) Risk Index which is a monetised risk measure, determined from the combination of the Health Index and Criticality Index.

The Health Index is a framework for collecting information relating to Asset Health and Probability of Failure. The Health Index consists of five bandings. Assets are allocated a Health Index Band based upon the Probability of Failure that is determined for the asset. The value of

Probability of Failure associated with each of the Health Index Bands is also reported. Different values of Probability of Failure are associated with different Health Index Asset Categories.

The Criticality Index is a framework for collecting information relating to Consequences of Failure. The Criticality Index consists of four bandings. Assets are allocated to a Criticality Index Band according to the relative magnitude of the Consequences of Failure of the individual asset compared to the Average Consequence of Failure for the relevant Asset Category. For each Health Index Asset Category, the Average Consequence of Failure is also reported.

Each reported asset is allocated to a Health Index Band and a Criticality Index Band. The Risk Index for an asset is based upon its position in the Risk Matrix that is formed by the Health Index and Criticality Index together. By assigning a typical Probability of Failure to each Health Index Band, and a typical Consequences of Failure to each Criticality Index Band, a monetised value of risk can be determined.

Separate Risk Matrices are produced to show:-

- i) existing asset risk,
- ii) future asset risk and
- iii) future asset risk taking account of planned interventions.

3.5 Hierarchy of Asset Categories

The Methodology applies to many different types of assets (e.g. overhead line conductor, cables, switchgear etc.).

Whilst the Methodology applies the same generic principles in evaluating health and criticality for each asset type, the inputs, calculations and calibrations differ for different types of assets.

This recognises differences in:-

- i) the types of Condition Based Functional Failures;
- ii) the evaluation of Asset Health; and
- iii) the impact of failure

associated with different asset types.

Within this document, the inputs, calculations and calibrations are often specified according to the type of asset. The groupings of asset used, for specifying this information, are referred to as Asset Categories.

There are two main types of Asset Category used within this document:-

- i) Asset Register Category; and
- ii) Health Index Asset Category

The Asset Register Category represents the groupings of asset type that are used in reporting the asset population in Ofgem's RIIO-ED1 RIGs - Cost & Volumes. The Asset Register Category is also used for the annual reporting of Network Asset Indices to Ofgem.

The Health Index Asset Category represents groupings of asset type at a higher level than the Asset Register Category. Each Health Index Asset Category is a grouping of one or more Asset Register Categories. For RIIO-ED1, the Network Asset Secondary Deliverables, agreed for

each DNO, have been defined in terms of the risk improvement relating to individual Health Index Asset Categories.

There are minor variations between DNOs for the mapping of Asset Register Categories to Health Index Asset Category within their individual Network Asset Secondary Deliverables. For the purposes of this document, each Health Index Category is used to describe the inputs, calculations and calibrations that shall apply to assets in the Asset Register Categories shown in Table 1.

TABLE 1: CATEGORISATION OF ASSETS

Health Index Asset Category	GORISATION OF ASSETS Asset Register Category
LV OHL Support	LV Poles
LV UGB	LV UGB
	LV Board (WM)
	LV Board (X-type Network) (WM)
	LV Circuit Breaker
LV Switchgear and Other	LV Pillar (ID)
	LV Pillar (OD at Substation)
	LV Pillar (OD not at a Substation)
	6.6/11kV Poles
HV OHL Support - Poles	20kV Poles
	6.6/11kV CB (GM) Primary
HV Switchgear (GM) - Primary	20kV CB (GM) Primary
	6.6/11kV CB (GM) Secondary
	6.6/11kV RMU
	6.6/11kV X-type RMU
HV Switchgear (GM) - Distribution	6.6/11kV Switch (GM)
	20kV CB (GM) Secondary
	20kV RMU
	20kV Switch (GM)
LIV Transformer (CM)	6.6/11kV Transformer (GM)
HV Transformer (GM)	20kV Transformer (GM)
EHV OHL Support - Poles	33kV Pole
ETTV OTTE Support - Poles	66kV Pole
EHV OHL Fittings	33kV Fittings
ETTV OTTET IMINGS	66kV Fittings
EHV OHL Conductor (Tower Lines)	33kV OHL (Tower Line) Conductor
ETTV OTTE GOTTGuetor (Tower Emes)	66kV OHL (Tower Line) Conductor
EHV OHL Support - Towers	33kV Tower
ETTV OTTE Gupport Towers	66kV Tower
EHV UG Cable (Gas)	33kV UG Cable (Gas)
	66kV UG Cable (Gas)
EHV UG Cable (Non Pressurised)	33kV UG Cable (Non Pressurised)
	66kV UG Cable (Non Pressurised)
EHV UG Cable (Oil)	33kV UG Cable (Oil)
(,	66kV UG Cable (Oil)

Health Index Asset Category	Asset Register Category
	HV Sub Cable
Submarine Cables	EHV Sub Cable
	132kV Sub Cable
	33kV CB (Air Insulated Busbars)(ID) (GM)
	33kV CB (Air Insulated Busbars)(OD) (GM)
	33kV CB (Gas Insulated Busbars)(ID)(GM)
	33kV CB (Gas Insulated Busbars)(OD)(GM)
EHV Switchgoor (CM)	33kV RMU
EHV Switchgear (GM)	33kV Switch (GM)
	66kV CB (Air Insulated Busbars)(ID) (GM)
	66kV CB (Air Insulated Busbars)(OD) (GM)
	66kV CB (Gas Insulated Busbars)(ID)(GM)
	66kV CB (Gas Insulated Busbars)(OD)(GM)
EHV Transformer	33kV Transformer (GM)
LITY Transformer	66kV Transformer (GM)
132kV OHL Fittings	132kV Fittings
132kV OHL Conductor (Tower Lines)	132kV OHL (Tower Line) Conductor
132kV OHL Support - Tower	132kV Tower
132kV UG Cable (Gas)	132kV UG Cable (Gas)
132kV UG Cable (Non Pressurised)	132kV UG Cable (Non Pressurised)
132kV UG Cable (Oil)	132kV UG Cable (Oil)
	132kV CB (Air Insulated Busbars)(ID) (GM)
132kV CBs	132kV CB (Air Insulated Busbars)(OD) (GM)
IJZRV CDS	132kV CB (Gas Insulated Busbars)(ID) (GM)
	132kV CB (Gas Insulated Busbars)(OD) (GM)
132kV Transformer	132kV Transformer (GM)

Within this document a number of generic terms are used to refer to higher level groupings of assets. The mapping of these generic terms to Health Index Asset Category is shown in Table 2.

TABLE 2: GENERIC TERMS FOR ASSETS

Generic Term		Health Index Asset Category
Cable	Pressurised Cable	EHV UG Cable (Oil)
		EHV UG Cable (Gas)
		132kV UG Cable (Oil)
		132kV UG Cable (Gas)
	Non Pressurised Cable	EHV UG Cable (Non Pressurised)
		132kV UG Cable (Non Pressurised)
		Submarine Cables
Switchgear		LV Switchgear and Other
		LV UGB
		HV Switchgear (GM) - Distribution
		HV Switchgear (GM) - Primary
		EHV Switchgear (GM)
		132kV CBs
	HV Transformer	HV Transformer (GM)
Transformers	Grid & Primary (or EHV & 132kV) Transformers	EHV Transformer
		132kV Transformer
	Poles	LV OHL Support
		EHV OHL Support - Poles
		HV OHL Support - Poles
	Towers	EHV OHL Support - Towers
Overhead Line		132kV OHL Conductor (Tower Lines)
	Fittings	EHV OHL Fittings
		132kV OHL Fittings
	OHL Conductor	EHV OHL Conductor (Tower Lines)
		132kV OHL Conductor (Tower Lines)

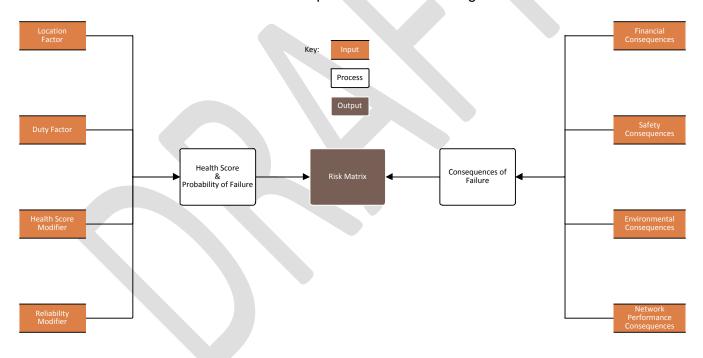
Defined Asset Register Categories not covered by the Methodology are shown in Table 3.

TABLE 3: EXCLUDED ASSET REGISTER CATEGORIES

Asset Register Category	Voltage
LV Main (OHL) Conductor	LV
LV Service (OHL)	LV
LV Main (UG Consac)	LV
LV Main (UG Plastic)	LV
LV Main (UG Paper)	LV
Rising & Lateral Mains	LV
LV Service (UG)	LV
LV Service associated with RLM	LV
Cut Out (Metered)	LV
LV Transformers/Regulators	LV
6.6/11kV OHL (Conventional Conductor)	HV
6.6/11kV OHL (BLX or similar Conductor)	HV
20kV OHL (Conventional Conductor)	HV
20kV OHL (BLX or similar Conductor)	HV
6.6/11kV UG Cable	HV

Asset Register Category	Voltage
20kV UG Cable	HV
6.6/11kV CB (PM)	HV
6.6/11kV Switch (PM)	HV
6.6/11kV Switchgear - Other (PM)	HV
20kV CB (PM)	HV
20kV Switch (PM)	HV
20kV Switchgear - Other (PM)	HV
6.6/11kV Transformer (PM)	HV
20kV Transformer (PM)	HV
Batteries at GM HV Substations	HV
33kV OHL (Pole Line) Conductor	EHV
66kV OHL (Pole Line) Conductor	EHV
33kV Switchgear - Other	EHV
33kV Switch (PM)	EHV
66kV Switchgear - Other	EHV
33kV Transformer (PM)	EHV
Batteries at 33kV Substations	EHV
Batteries at 66kV Substations	EHV
132kV OHL (Pole Line) Conductor	132kV
132kV Pole	132kV
132kV Switchgear - Other	132kV
Batteries at 132kV Substations	132kV
Pilot Wire Overhead	Other
Pilot Wire Underground	Other
Cable Tunnel (DNO owned)	Other
Cable Bridge (DNO owned)	Other
Electrical Energy Storage	Other

4. OVERVIEW OF COMMON NETWORK ASSET INDICES METHODOLOGY


4.1 Key Outputs

The two key outputs from the Methodology are:-

- i) an evaluation of Probability of Failure (the likelihood of condition based failure per annum) for individual assets; and
- ii) an evaluation of the Consequences of Failure associated with condition based failures for individual assets (i.e. the impact of a failure, expressed as a monetised value, in £).

The risk of condition based failure, associated with an individual asset, is the product of the Probability of Failure and the Consequences of Failure. Therefore, the two key outputs from the Methodology, when used together, provide information relating to condition based risk.

Probability of Failure and Consequences of Failure are calculated for all individual assets within those Health Index Asset Categories where a DNO has agreed Network Asset Secondary Deliverables. An overview of the calculation process is shown in Figure 1.

FIGURE 1: PROCESS OVERVIEW

The regulatory reporting framework, for Network Asset Indices, comprises three components:-

- i) the Health Index, summarised in five bands HI1-5;
- ii) the Criticality Index, summarised in four bands C1-4; and
- iii) the Risk Index.

For regulatory reporting purposes, individual assets are assigned to a Health Index Band based on the Probability of Failure that has been determined for the asset under the Methodology.

The evaluation of Probability of Failure is dependent upon:-

- i) firstly assessing Asset Health; and
- ii) then deriving Probability of Failure from Asset Health.

Assets are assigned to a Criticality Index Band based upon the relative magnitude of their Overall Consequences of Failure, when compared to the Average Overall Consequence of Failure for assets in the same Health Index Asset Category in the same DNO.

The Risk Index is a monetised risk measure that is calculated from the reported Health Index and Criticality Index information by assigning each cell in the Risk Matrix a reference risk value in £. Given the assessments above, an individual asset can be assigned a position within the Risk Matrix for that asset type.

The allocation of assets to Health Index Bands and Criticality Index Bands, and derivation of Risk Index, is described further in Section 5.

The regulatory reporting of Network Asset Indices includes the reporting of forecast future Health Index and Criticality Index for each asset, as well as the current position. This requires that the Methodology includes assessment of:-

- i) current Probability of Failure and Consequences of Failure; and
- ii) forecast future Probability of Failure and Consequences of Failure (including the assessment of changes arising from Interventions). This requires a common assessment of deterioration and a consistent view of which actions impact health and/or criticality.

4.2 Definition of Failure

The evaluation of Probability of Failure and Consequences of Failure within the Methodology may be viewed as two separate distinct calculations. However, they are both evaluated based on consideration of the same set of condition based failure modes (i.e. the same definition of what is a failure) to ensure the same set of potential events is being considered in the assessment of probabilities and consequences.

The Methodology considers Functional Failures in the derivation of Probability of Failure and Consequence of Failure. These relate to the inability of an asset to adequately perform its intended function and therefore are not solely limited to failures that result in an interruption to supply.

The Functional Failures considered in the Methodology are identified for each Asset Category, in Appendix A. These relate only to Functional Failures directly resulting from the condition of the asset itself. Failures of function due to third party activities are not included.

4.3 Evaluation of Current Asset Health and Probability of Failure

4.3.1 Overview

This section describes how current Asset Health is calculated and used to derive an associated Probability of Failure.

4.3.2 Current Health Score

The current health of an asset is represented by a Health Score (the Current Health Score) using a continuous scale between 0.5 and 10.

A value of 0.5 on this scale represents an asset where the health is the same as would be expected for a new asset. A Health Score of 5.5 represents the point in an assets life beyond which any significant deterioration may begin to be observed. A value of 10 represents an asset in extremely poor condition.

The Current Health Score for an individual asset is derived from information relating to:-

- i) the age of the asset;
- ii) the Normal Expected Life for an asset of its type;
- iii) factors relating to aspects of the environment in which the asset is installed that may impact upon its Expected Life (Location Factors);
- iv) factors relating to the usage of the asset at its specific location that may impact upon its Expected Life (Duty Factors);
- v) factors relating to the observed condition of the asset (Observed Condition Inputs);
- vi) factors relating to the condition/health of the asset determined by measurements, tests or functional checks (Measured Condition Inputs); and
- vii) a factor relating to generic reliability issues associated with the individual make and type of an asset (Reliability Modifier).

The calculation of Current Health Score is performed in two main steps:-

- i) calculation of an initial age based Health Score (the Initial Health Score) using an age based degradation model; then
- ii) modification of the Initial Health Score using:-
 - known condition information for the asset; and
 - a Reliability Modifier, if appropriate.

These two steps are described in more detail below:-

i) Calculation of the Initial Health Score

The Initial Health Score is calculated from the age of the asset and its Expected Life. The Expected Life for the asset is the Normal Expected Life for an asset of its type, adjusted to take account of the Location Factors and Duty Factors relating to the individual asset's location and usage.

A generic exponential relationship between age and health is used to determine the Initial Health Score. The shape of the exponential curve is dependent upon the Expected Life of the asset.

The Initial Health Score is capped at a value of 5.5, so that an asset is not assigned a Current Health Score that implies that it has reached the end of its useful life purely on the basis of its age.

The Methodology defines the methodology for the calculation of Initial Health Score for all Asset Categories. This includes definitions of the Location Factor and Duty Factor to be applied, and their calibration parameters. Therefore an asset in any DNO Licence

Area with the same age, location and duty attributes will be assigned the same Initial Health Score using the Methodology.

The calculation of Initial Health Score is detailed in Sections 6.1.3 to 6.1.6.

ii) Modification of the Initial Health Score

The Current Health Score is determined by application of a Health Score Modifier, and separate Reliability Modifier, to the Initial Health Score.

A Health Score Modifier is determined for each individual asset, using information relating to the asset's condition. This information can be broadly categorised as either:-

- Observed Condition Inputs; or
- Measured Condition Inputs.

Observed Condition Inputs relate to condition information that can be gathered by the inspection of an asset. However, it is not always possible to gather observed condition data without undertaking intrusive inspection.

Alternatively diagnostic tests, measurements or functional checks may be undertaken to ascertain the health of the asset. Measured Condition Inputs relate to condition information that is collected in this way.

The Methodology defines various Observed Condition Inputs and Measured Condition Inputs that can be used to determine the Health Score Modifier for an asset, including their calibration parameters.

These Condition Inputs and the methodology for determining the values for the Health Score Modifier are detailed in Sections 6.7 to 6.13.

The application of the Health Score Modifier to the Initial Health Score is described in Section 6.1.7.

It may be appropriate to apply a Reliability Modifier in the derivation of the Current Health Score (as detailed in Section 6.14). This is applied to take account of assets, where in individual DNO or industry experience, there are asset type or make issues leading to material differences in the reliability of the asset. Where a DNO applies a Reliability Modifier to a particular type of asset, this shall be described within their own Network Asset Indices Methodology.

In recognition that different inspection and assessment approaches exist between DNOs, there is no requirement for data to be collected to apply all the Condition Inputs specified within the Methodology.

Where DNOs have collected the same condition information for an asset, application of the Methodology shall result in the same Health Score Modifier values being determined for the asset. As there is similar commonality in the derivation of the Initial Health Score, an asset in any DNO with the same age, location, duty and collected condition information will be assigned the same Current Health Score using the Methodology, except where a Reliability Modifier is applied.

The Reliability Modifier is applied at the final stage of the calculation of Current Health Score so that its effect upon the Current Health Score can be directly observed.

The Current Health Score is capped at a value of 10.

4.3.3 Current Probability of Failure

For each Asset Category, the relationship between Health Score and Probability of Failure is defined within the Methodology. The current Probability of Failure is derived from the Current Health Score. This is described in Section 6.

As this relationship and its calibration values are defined, the Probability of Failure for assets will be identical where the Health Score and Asset Category are the same. This means that an asset in the same health is considered to have the same likelihood of condition based failure irrespective of which DNO it is installed in.

4.4 Evaluation of Future Asset Health and Probability of Failure

4.4.1 Overview

The evaluation of future Probability of Failure assumes that as an asset ages in the future then its health will deteriorate and consequently the Probability of Failure will increase.

The evaluation of the future Probability of Failure under the Methodology is performed by evaluating the forecast future Asset Health for the asset and then deriving the associated Probability of Failure.

4.4.2 Future Health Score

The Future Health Score is derived using similar age based deterioration assumptions to those used in the calculation of the Initial Health Score. It is derived by forecasting forwards from the Current Health Score using a simple exponential relationship as detailed in Section 6.1.10.

The rate of deterioration used for forecasting the Future Health Score is informed by the amount of deterioration in Asset Health that has already been observed for the asset from its current state (i.e. Current Health Score) and age. This is detailed in Section 6.1.8.

The Future Health Score is capped at a value of 15, which is higher than the cap that is applied to the Current Health Score. This is to enable modelling of further deterioration of all assets.

4.4.3 Future Probability of Failure

The calculation of future Probability of Failure uses the same relationship between Health Score and Probability of Failure that is used in the derivation of the current Probability of Failure (see Section 4.3.3 above).

The future Probability of Failure for an asset is derived by applying this relationship to the Future Health Score.

4.4.4 Interventions

The reporting of Health Index and Criticality Index requires the effect of investment activities that are aimed at managing the risk of condition based failures to be evaluated. This is described in Section 6.1.11.

4.5 Evaluation of Consequences of Failure

The Methodology separately evaluates the Consequences of Failure for each individual asset, in four specified Consequence Categories:-

- i) Financial (incorporating repair & replacement costs);
- ii) Safety;
- iii) Environmental; and
- iv) Network Performance

A monetised value in £ (at 2012/13 prices) is assessed for each of these Consequence Categories. The Overall Consequences of Failure for an asset can therefore be derived by the summation of the Consequences of Failure in each of these categories. These represent the impact of a failure and the societal cost of that impact.

The methodology for the calculation of Consequences of Failure in each of the Consequence Categories is based on the use of reference costs. These reference costs are defined within the Methodology and are common.

The derivation of the reference costs, using accepted societal costs where available, is described in Section 7.

For an individual asset, the Consequences of Failure associated with the asset are driven by the localised situation of the asset. For example, the Network Performance impact will be driven by the number of customers, or amount of load, that is affected by failure of the asset. Similarly, the environmental impact may be dependent upon the proximity of the asset to an environmentally sensitive area (such as a watercourse).

To reflect this, the Consequences of Failure associated with each individual asset are determined by application of asset specific modifying factors to the appropriate reference cost. These factors represent the variation to the reference costs that results from the localised situation of the individual asset.

The Methodology specifies the asset specific factors that shall be applied in the derivation of the Consequences of Failure and also the associated calibration values. As a result, application of the Methodology results in a consistent evaluation of the Consequences of Failure, across DNOs, which also reflects the localised situation of individual assets.

Section 7 provides details for the methodology for determining Consequences of Failure.

5. RISK

5.1 Overview

This section covers the methodology which will be applied by DNOs in order to calculate the Probability of Failure and Consequence of Failure of an asset, as well as the banding for mapping these outputs to the Health Index and Criticality Index within the Risk Reporting Matrix for each asset category.

5.2 Risk Evaluation

For each asset, the Methodology shall determine:-

- i) the Probability of Failure (per annum) and
- ii) the Overall Consequences of Failure (£)

associated with condition based failures.

The risk of failure associated with each individual asset can be evaluated in £ (at 2012/13 prices) from the product of the Probability of Failure and the Overall Consequences of Failure. However, the actual risk of failure is not used for regulatory reporting. Instead a value of monetised risk, the Risk Index, is derived from the reported Health Index and Criticality Index for each asset. This is explained further in the following section.

5.3 Risk Reporting

For the regulatory reporting of Asset Health and criticality, Risk Matrices shall be used. These are matrices that show the population of assets, within a given Asset Category, that have the same Health Index and Criticality Index. The Risk Index is evaluated from the Health Index and Criticality Index. This is illustrated in Figure 2.

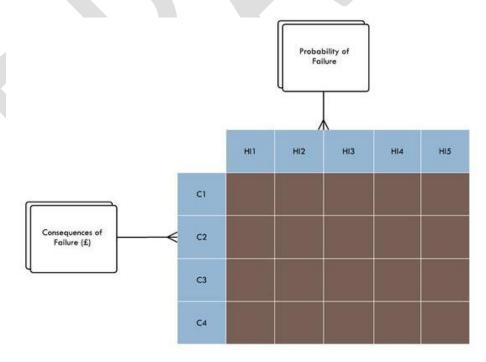


FIGURE 2: RISK REPORTING MATRICES

The Health Index groups assets into one of five bandings (HI1 to HI5) based on their Health Score. These Health Index Bands are subsequently translated to Probability of Failure (PoF) values. The Health Index Band HI1 represents assets where the Probability of Failure is the same as that for a new asset.

The Methodology evaluates the current health of an asset using a Health Score with continuous scale between 0.5 and 10 (this scale is extended up to 15 for the forecasting of future health). The relationship between this Health Score and Probability of Failure is defined by the Methodology and is explained in Section 6.

For each Asset Category, the Health Index Banding Criteria for allocating individual assets to their Health Index Band is defined in terms of the Probability of Failure. This enables a specific range of PoF to be specified in accordance with its relationship to its underlying Health Score. The Health Index Banding Criteria, expressed in terms of these values of Health Score, are shown in Table 4.

TABLE 4: HEALTH INDEX BANDING CRITERIA

Health Index Band	Health Index Banding Criteria		
	Lower Limit of Health Score	Upper Limit of Health Score	
HI1	-	<4	
HI2	≥ 4	<6	
HI3	≥ 6	<7	
HI4	≥7	<8	
HI5	≥ 8	-	

Figure 3 illustrates where the Health Index Bands lie on a typical Asset Health / Probability of Failure curve.

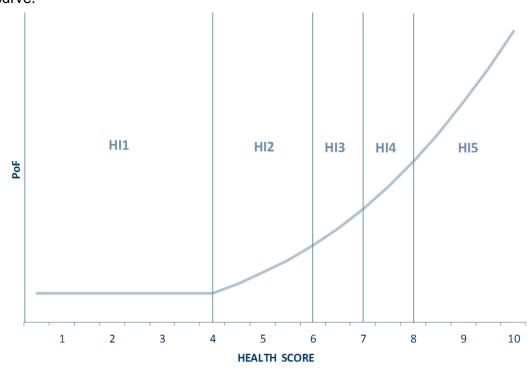


FIGURE 3: HI BANDING

For regulatory reporting DNOs also are required to report, for each Health Index Asset Category:-

- i) the Probability of Failure associated with the upper and lower limits of each Health Index Band; and
- ii) the Average Probability of Failure that is typical of the Probability of Failure associated with assets within each Health Index Band.

For each Health Index Asset Category, the reported Average Probability of Failure for each Health Index Band shall be the Probability of Failure that is derived from the value of Health Score shown in Table 5.

Health Index Band

Health Score to be used to derive Average Probability of Failure

HI1 4

HI2 5

HI3 6.5

HI4 7.5

HI5 10

TABLE 5: HEALTH SCORE USED TO DERIVE AVERAGE PROBABILITY OF FAILURE

The Criticality Index groups assets into bandings based upon their Consequence of Failure. Each asset shall be placed in a Criticality Index Band, based upon the relative magnitude of the Overall Consequence of Failure of the asset, compared to the Average Overall Consequence of Failure for all assets in the same Health Index Asset Category. There are four Criticality Index Bands:-

- i) C1 'Low' criticality
- ii) C2 'Average' criticality
- iii) C3 'High' criticality
- iv) C4 'Very High' criticality

The 'C2' Criticality Index Band represents assets where the Overall Consequences of Failure is approximately the same as the Average Overall Consequence of Failure for all assets within a DNO in the same Health Index Asset Category.

For each Asset Category, the Criticality Index Banding Criteria is defined in terms of bandings of magnitude of Overall Consequences of Failure, expressed as a percentage of the Average Overall Consequence of Failure for all assets in the same Health Index Asset Category. These are shown in Table 6.

TABLE 6: CRITICALITY INDEX BANDING CRITERIA Criticality Index Banding Criteria Lower Limit of Overall Consequences Upper Limit of Overall Criticality Index Consequences of Failure (as % of of Failure (as % of Average Overall Band Consequence of Failure for the Asset Average Overall Consequence of **Failure for the Asset Category)** Category) C1 < 75% < 125% C2 ≥ 75% СЗ ≥ 125% < 200% C4 ≥ 200%

For regulatory reporting, DNOs are also required to report the Average Overall Consequence of Failure, for each Health Index Asset Category, used when allocating assets into the appropriate Criticality Index Band. These are values that represent the average for the individual DNO.

The values for Average Overall Consequence of Failure are calculated from the asset population that exists in a reference year, defined in the regulatory reporting requirements. These values are then fixed, as reference values, for allocation of assets into Criticality Index Bands in subsequent years.

The Health Index and Criticality Index information is used to derive the Risk Index.

By assigning:-

- i) a typical value of Probability of Failure to all assets within the same Health Index Band (for a given Health Index Asset Category); and
- ii) a typical value of Consequence of Failure to all assets within the same Criticality Index Band (for a given Health Index Asset Category)

it is possible for the risk associated with each asset to be approximated by reference to its position within the Risk Matrix. This provides the Risk Index used for regulatory purposes.

The typical values of Probability of Failure and Consequences of Failure can be derived from the reported information, i.e.:-

- i) the reported Average Probability of Failure for each Health Index Band; and
- ii) by applying a suitable weighting factor (typical for the Criticality Index Banding Criteria), for each Criticality Index Band, to the Average Overall Consequence of Failure for each Health Index Asset Category.

The outputs from the Methodology facilitate population of Risk Matrices representing the following three scenarios:-

- i) existing asset risk;
- ii) future asset risk; and
- iii) future asset risk taking account of planned interventions

This information shall be used for the regulatory reporting of the Health Index and Criticality Index for each asset as shown in Figure 4.

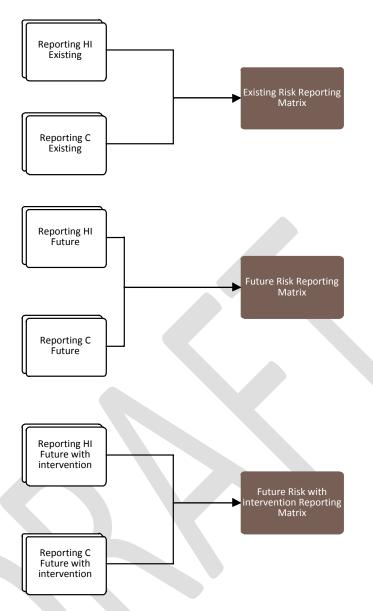


FIGURE 4: REPORTING OF RISK FOR EACH SCENARIO

6. PROBABILITY OF FAILURE (POF)

6.1 PoF Calculation (General)

6.1.1 Overview

The Health Index (HI) is derived from the Health Score and Probability of Failure (PoF). The PoF of an asset is a function of the asset's Health Score, with the Health Score being a function of Normal Expected Life, location, duty, reliability, observed condition and measured condition.

For the majority of assets a single Health Score is calculated, which is then converted into a PoF. However for EHV and 132kV Transformers and steel Towers it is necessary to calculate a Health Score for each component and then combine these into an overall Health Score. These multi-component assets are special cases which are covered in more detail in Sections 6.2 and 6.3. Figure 5 shows the process to be followed in order to calculate the PoF of an asset (or component):-

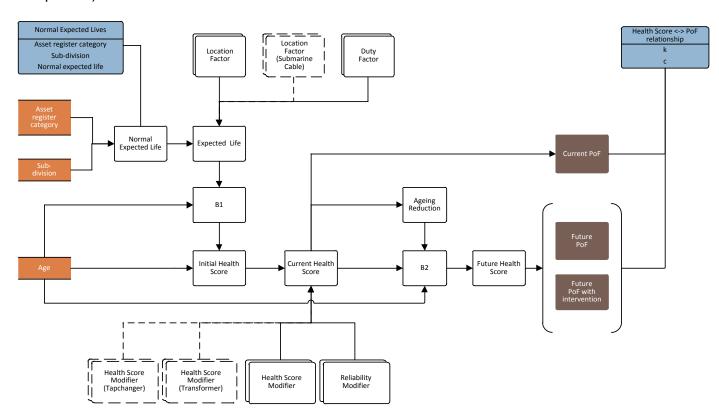


FIGURE 5: PROBABILITY OF FAILURE

The Condition Based PoF per annum shall be calculated using the cubic curve shown in Eq. 1. This is based on the first three terms of the Taylor series for an exponential function. This implementation has the benefit of being able to describe a situation where the Probability of Failure rises more rapidly as asset health degrades, but at a more controlled rate than a full exponential function would describe.

PoF = K ×
$$\left[1 + (C \times H) + \frac{(C \times H)^2}{2!} + \frac{(C \times H)^3}{3!}\right]$$
 (Eq. 1)

Where:

- If Health Score > 4, then H = Health Score (Current or Future)
- If Health Score ≤ 4 , then H = 4
- K and C are constants

The constants and variables in the above equation are described in Section 6.1.2.

6.1.2 K-Value, C-Value and Constants in PoF

A generic and common PoF curve will be used to describe the relationship between asset Health Score and PoF. The curve is one commonly used in reliability theory. It shows constant PoF for low values of Health Score and an exponential increase in PoF for higher values of Health Score, representing where increasing health degradation results in an escalating likelihood of failure. The shape of a typical PoF curve can be seen in Figure 3.

For a common curve, the parameters used to construct the curve need to be common. The common parameters are the C-Value that defines the shape of the curve, the K-Value that scales the PoF to a failure rate, and the Health Score limit at which there is a transition from constant PoF to an exponential relationship. The values for the C-Values, the K-Values and the constant Health Score limit are shown in Table 19 in Appendix B.

The C-Value is the same for all Asset Categories and has been selected such that the Probability of Failure for an asset in the worst state of health is ten times higher than the Probability of Failure of a new asset.

The Health Score limit represents the point at which there starts to be a direct relationship between the Health Score and an increasing PoF. The PoF associated with Health Scores below this limit relate to installation issues or random events.

The K-Value for each Asset Category has been derived from national failure rates, equipment volumes and health index distributions. This calibration of K ensures that in each Asset Category the total GB expected number of failures, derived from the relative PoF contribution of every asset in the GB health index distribution, matches the number of GB functional failures.

The national failure rate figures used were the sum of all DNO functional failures (5 year annualised average) in accordance with the Condition Based Functional Failure definition. These are shown in Appendix A.

6.1.3 Normal Expected Life

The Normal Expected Life depends on the Asset Register Category and its sub-category. It is defined as the time (in years) in an asset's life when the first significant signs of deterioration would be expected. This corresponds to a Health Score of 5.5. The value is specified in the Normal Expected Lives calibration table (Table 18, Appendix B) and is expressed in years.

6.1.4 Expected Life

Expected Life is derived from Normal Expected Life, taking into account two degradation factors: Location Factor (which represents the effects of the surrounding environment on the asset) and Duty Factor (which represents any additional ageing due to the way in which the asset is being used). Expected Life is calculated using Eq. 2.

Expected Life =
$$\frac{\text{Normal Expected Life}}{(\text{Duty Factor} \times \text{Location Factor})}$$
 (Eq. 2)

Location and Duty Factors are described in more detail in Sections 6.4 - 6.6.

6.1.5 β_1 (Initial Ageing Rate)

The rate of change of the health of a distribution asset is exponential, as the processes involved as the asset deteriorates (e.g. corrosion, oil oxidation, insulation breakdown, etc.) are accelerated by the products of the deterioration process.

The Ageing Rate of the asset is determined from the natural logarithm of the assets Health Score when new and the Health Score that corresponds to the Expected Life of the asset, using Eq. 3.

$$\beta_1 = \frac{ln\left(\frac{H_{expected\ life}}{H_{new}}\right)}{Expected\ Life}$$
 (Eq. 3)

Where:

- Hnew is the Health Score of a new asset, equal to 0.5
- Hexpected Life is the Health Score of the asset when it reaches its Expected Life, equal to 5.5
- Expected Life is described in Section 6.1.4

6.1.6 Initial Health Score

The Initial Health Score is obtained by defining the generic relationship between asset health and age using the nominal asset life for the asset type.

Initial Health Score =
$$H_{new} \times e^{(\beta_1 \times age)}$$
 (Eq. 4)

Where:

- Hnew is the Health Score of a new asset, equal to 0.5
- Initial Health Score is capped at a value of 5.5
- β₁ is the initial Ageing Rate as described is Section 6.1.5
- age is the current age of the asset in years

This relationship gives an initial estimate of asset health, but does not take into account any actual health measurement or assessment that may have been carried out. This stage provides an initial age-based indication of health, which needs to be modified in the next stage according to available data.

6.1.7 Current Health Score

The Initial Health Score is modified according to available data using the Health Score Modifier and, where appropriate, a Reliability Modifier (see Section 6.14).

The Health Score Modifier consists of three components:-

- i) Health Score Factor, which determines how the Initial Health Score is to be modified
- ii) Health Score Cap, which specifies the maximum value of Current Health Score (used in situations where a good result from a condition inspection or measurement implies that the Health Score should be no more than the specified value)
- iii) Health Score Collar, which specifies the minimum value of Current Health Score (used in situations where a poor result from a condition inspection or measurement implies that the Health Score should be at least the specified value)

The Reliability Modifier may consist of two components:-

- i) A Reliability Factor; and
- ii) A Reliability Collar.

The Current Health Score is calculated initially as follows:-

Current Health Score = **Initial Health Score** × **Health Score Factor** × **Reliability Factor**

(Eq. 5)

The Current Health Score is then compared with Health Score Cap as follows:-

IF Current Health Score > Health Score Cap **THEN** Current Health Score = Health Score Cap

(Eq. 6)

Where:

Current Health Score is capped at 10

The Current Health Score is then compared with Health Score Collar as follows:-

IF Current Health Score < MAX (Health Score Collar, Reliability Collar) **THEN** Current Health Score = MAX (Health Score Collar, Reliability Collar)

(Eq. 7)

Note that the order of calculation is important; the calculation must be done in the order specified to ensure that poor condition measurements override good ones; i.e. the Current Health Score must be compared with the Health Score Cap and assigned a result before comparing this result to the Health Score Collar.

Typically, Health Score Collar is 0.5 and Health Score Cap is 10, implying no overriding of the Health Score. However, in some instances these parameters are set to other values in the Health Score Modifier calibration tables. These overriding values are shown in Table 32 to Table 193 and Table 198 in Appendix B.

6.1.8 β₂ (Current Ageing Rate)

In order to forecast a Future Health Score from the Current Health Score, the Ageing Rate needs to be re-calculated so that the effects of the Health Score Modifier and Reliability Modifier are taken into account; i.e. calculate the Ageing Rate implied by the asset's actual condition.

The current Ageing Rate β_2 is derived from the Current Health Score, the asset Age and an Ageing Reduction Factor (see Section 6.1.9) using Eq. 8 and Eq. 9.

If Age ≥ 10 years:

$$\beta_2 = \frac{ln\left(\frac{Current\ Health\ Score}{H_{new}}\right)}{Age\times Ageing\ Reduction\ Factor} \tag{Eq.\ 8}$$

If Age < 10 years:

$$\beta_2 = \beta_1$$
 (Eq. 9)

For assets under 10 years old, the current Ageing Rate shall be set to the initial Ageing Rate. This is to prevent an unrealistically high rate of deterioration being applied to relatively new assets where reliability issues have been identified early on in their life.

Figure 6 illustrates the re-calculation of the Ageing Rate for forecasting future health.

- i) the initial Ageing Rate, β_1
- ii) the "trued-up" Ageing Rate which would have been necessary for the asset to be in its current condition
- iii) the application of an Ageing Reduction Factor.

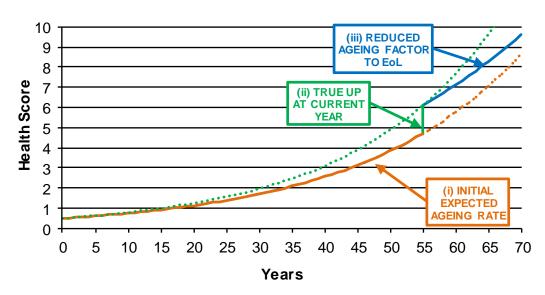


FIGURE 6: EFFECT OF AGEING REDUCTION FACTOR ON ASSET DETERIORATION

6.1.9 Ageing Reduction Factor

The use of the exponential curve results in an escalating acceleration effect once assets reach a high Health Score. For assets that are approaching end of life (EoL), this can result in a runaway effect in the forecast future PoF, which would not reflect the deterioration that would be observed in real life.

The cause of the runaway effect is due to the imperfect match of the selected curve once the asset reaches high values of health and hence resultant PoF. In order to minimise the potential for overstatement of the forecast future PoF, an Ageing Reduction Factor is introduced to modify the asset's rate of deterioration. This slows down the Ageing Rate of the asset by flattening the exponential curve especially (although not exclusively) where the Health Score is greater than 5.5.

The principle employed to modify the Ageing Rate is based on the Value of Statistical Life (VSL) as used in economic practice. VSL is based on the changing way in which humans value risk as they age. This is applied to physical assets. In young assets of unproven reliability there is a higher PoF when compared to assets of a higher age, therefore as an asset has reached the higher age with no identified issues, the probability is that it will continue to provide good service and hence its life expectancy is longer than the younger asset. Therefore the old asset's PoF can be reduced in relative terms from the value calculated.

The ageing reduction technique as described above is used to reduce the forecast increase in PoF with time for assets where the Current Health Score represents any significant level of degradation. The ageing reduction factor acts by reducing the original ageing factor. This practice is in keeping with the common use by engineers of PF interval reliability concepts [Ref 1] which set:

- i) P as the point where a potential failure can be detected and
- ii) F as where the functional failure occurs

In such concepts, a curve is drawn between the two points, P and F, to produce a forecast of time to failure and the reduction effect is capped so that the accelerated ageing that occurs as the asset approaches failure is correctly reflected.

In the Methodology, the Ageing Reduction Factor applied will vary, depending upon the Current Health Score for the asset:-

- for assets where the Current Health Score is greater than 5.5, the Ageing Reduction Factor is set to its maximum permissible value
- ii) for assets where the Current Health Score is less than 2, the Ageing Reduction Factor is set to unity.

In order to prevent low Health Score assets deteriorating more quickly than high Health Score assets when forecasting, there must be no significant step change in the factor value. The Ageing Reduction Factor therefore varies linearly between unity and its maximum permissible value, for Health Scores between 2 and 5.5.

The maximum permissible value of Ageing Reduction Factor shall be set to 1.5.

The Ageing Reduction Factor calibration table can be seen in Table 206 in Appendix B and is illustrated in Figure 7.

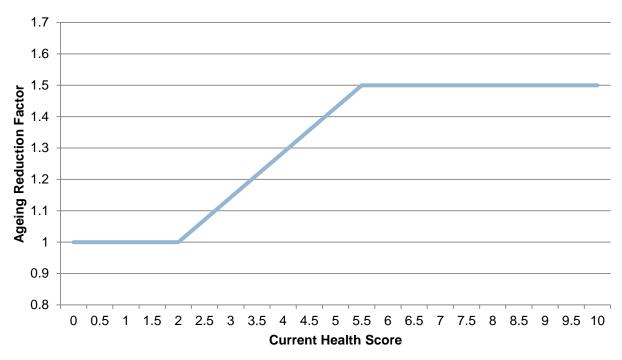


FIGURE 7: AGEING REDUCTION FACTOR

6.1.10 Future Health Score - Deterioration

The Future Health Score is calculated using the same exponential based methodology as the Initial Health Score.

Future Health Score \times $e^{(\beta_2 \times t)}$

(Eq. 10)

Where:

- t is the number of future years
- Current Health Score is as described in Section 6.1.7
- β₂ is the current Ageing Rate as described in Section 6.1.8
- Future Health Score is capped at 15

6.1.11 Interventions

Interventions are activities that are undertaken to manage the risk of condition based failure. In RIIO-ED1, DNOs have Network Asset Secondary Deliverables that relate to the improvement in risk that is delivered by Asset Replacement, as well as some Refurbishment activities. Such activities are primarily aimed at managing risk by reducing the Probability of Failure.

The effect of these activities shall be calculated by modifying the input data used in the Methodology. This approach shall be used for the calculation of either the Current Health Score or Future Health Score.

For Asset Replacement interventions, this is simply a recalculation of Asset Health and Criticality (and hence risk) taking account of the changes in the asset population that have resulted from the Intervention (i.e. removal of assets and the addition of new assets).

For Refurbishment interventions, the Asset Health and Criticality shall be recalculated using revised input data for the asset that is subject to the Refurbishment activity. This revised input data should take account of the change in input data that has resulted from the Refurbishment activity e.g. changes to the Health Score Modifier to reflect the observed or measured condition following completion of the Refurbishment.

Only certain Refurbishment activities contribute to the delivery of the Network Asset Secondary Deliverables. These are defined in Ofgem's RIIO-ED1 Regulatory Instructions and Guidance.

Appendix C identifies these Refurbishment activities and also the input data that should be reevaluated in order to account for the improvement in risk delivered by such activity.

6.2 PoF Calculation (EHV and 132kV Transformers)

The Probability Of Failure for EHV Transformers (i.e. 33kV Transformer (GM) and 66kV Transformer (GM) assets) and 132kV Transformers is derived by separate consideration of the health of two distinct subcomponents:-

- i) the main transformer; and
- ii) the tapchanger.

This recognises the degree of independence between the health of these components.

The Health Score for the overall transformer asset is derived from the combination of the Health Scores for both of these components.

Health Scores for the main transformer and tapchanger components shall be separately determined, using broadly the same approach as outlined in Section 6.1. This is summarised below:-

i) A separate Initial Health Score is calculated for the main transformer subcomponent and the tapchanger subcomponent, using Eq. 4, as described in Section 6.1.6. For each component different Normal Expected Lives and age information shall be used. However, the same Location and Duty Factors are applied to both components. The Normal Expected Life of the tapchanger subcomponent and main transformer subcomponent are shown in Table 18 in Appendix B.

To calculate the Initial Health Scores using Eq. 4:-

- for the main transformer the Normal Expected Life for a transformer shall be used and the age shall be taken as being the age of the main transformer component;
- for the tapchanger the Normal Expected Life for a tapchanger shall be used and the age shall be taken as being the age of the tapchanger component.

Where the age of the tapchanger and the age of the main transformer component are not separately known, it shall be assumed that both components have the age that is recorded for the overall transformer asset.

ii) Separate Health Score Modifiers are calculated for both the main transformer and the tapchanger components. The calculation of these Health Score Modifiers is discussed in Section 6.8.

For the tapchanger component, the Health Score Modifier is derived using an Observed Condition Modifier and Measured Condition Modifier (the determination of these Modifiers is described in Sections 6.9 and 6.10).

For the main transformer subcomponent an Oil Test Modifier, DGA Test Modifier and FFA Test Modifier are also used in addition to an Observed Condition Modifier and Measured Condition Modifier (these additional Modifiers are described in Sections 6.11, 6.12 and 6.13).

- iii) Separate Current Health Scores are calculated for both components using the Health Score Modifier and the Initial Health Score calculated for the relevant component, e.g. the Health Score Modifier for the tapchanger component is applied to the Initial Health Score for the tapchanger component in order to calculate the Current Health Score for the tapchanger component.
- iv) A current Ageing Rate, β_2 , is separately calculated for each component, using the approach described in Section 6.1.8. For each component, the age used in the calculation of β_2 shall be the same age that was used in the calculation of the Initial Health Score.
- v) The Future Health Score shall be calculated for each component using Eq. 10, as described in Section 6.1.10. For each component the Current Health Score and value of β_2 , relating to that component, shall be used in the determination of the Future Health Score.

The Current Health Score of the overall transformer asset shall be taken as the maximum of the Current Health Score of the main transformer component and the Current Health Score of the tapchanger component.

Similarly, the Future Health Score of the overall transformer asset shall be taken as the maximum of the Future Health Score of the main transformer component and the Future Health Score of the tapchanger component.

The Probability of Failure for the overall transformer asset shall be determined by application of Eq. 1 (Section 6.1.1) to the overall Health Score (i.e. the maximum Health Score of the subcomponents).

6.3 PoF Calculation (Steel Towers)

Steel Towers are made up of individual steel members bolted together to form a lattice arrangement above ground. Tower foundations are the interlinking component between the support and the ground (soil and/or rock).

The life of a steel Tower is primarily dependent on the rate of deterioration of this steelwork both above and below ground.

New steelwork is protected from corrosion by zinc galvanising. Under normal circumstances galvanising would be expected to provide protection against the onset of corrosion, for the steelwork above ground, for a period of up to 30 years.

A paint system would normally be applied to the steelwork above ground, in order to provide a secondary form of protection against corrosion. The paintwork, itself, will deteriorate over time (typically providing protection for up to 20 years) and will require reapplication in order to maintain its protective function. The first application of a paint system to a Tower normally takes place after 30 years, once the zinc galvanising has expired.

For Towers, once corrosion has set in the intervention requirement changes considerably from low cost piecemeal steel member replacement and the application of a protective paint system, to much more expensive full Tower replacement. Therefore with regards to the above ground steelwork, the typical strategy adopted by DNOs is to paint/refurbish before significant corrosion sets in. The typical effect of such a strategy upon the Health Score of a Tower, through its life, is illustrated in Figure 8.

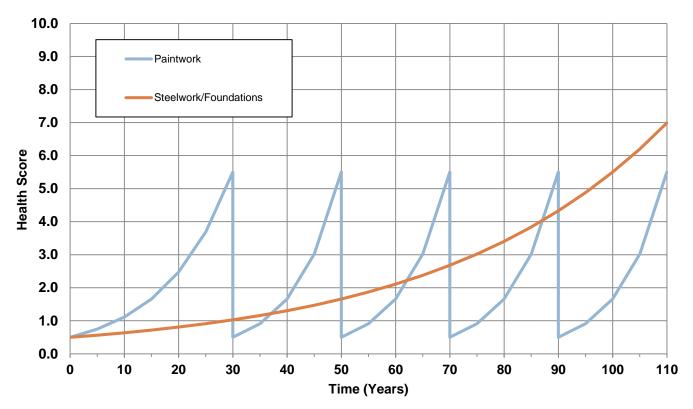


FIGURE 8: STEEL TOWER HEALTH SCORE

Therefore within this framework the overall life cycle (Health Score) for a steel Tower is defined as a function of three discrete elements of the Tower:

- i) the paintwork
- ii) the steelwork
- iii) the foundations

Health Scores for each of these three components shall be separately determined, using broadly the same approach as outlined in Section 6.1. This is summarised below:-

- i) A separate Initial Health Score is calculated for each of the three components, using Eq. 4, as described in Section 6.1.6. For each component different Normal Expected Lives and age information shall be used. However, the same Location and Duty Factors are applied to all three components. The Normal Expected Life of the paint system (rather than the Tower), foundations and steelwork are shown in Table 18 in Appendix B. To calculate the Initial Health Scores using Eq. 4:-
 - for the Tower steelwork: the Normal Expected Life of steelwork shall be used¹;
 - for the paintwork:
 - if the Tower is unpainted: the Normal Expected Life of galvanising shall be used and the age shall be taken as being the age of the Tower steelwork;
 - if the Tower is painted: the Normal Expected Life of paint shall be used and the age shall be taken as time that has elapsed since the Tower was last painted;
 - for the Tower foundation: the Normal Expected Life of the Tower foundation shall be used and the age shall be taken as being the age of the foundation. Where the age of the Tower steelwork and the age of the Tower foundation are not separately known, it shall be assumed that both the steelwork and foundation have the age that is recorded for the overall Tower.
- ii) Separate Health Score Modifiers are calculated for each of the three components.
- iii) Separate Current Health Scores are calculated for each of the three components using the Health Score Modifier and the Initial Health Score calculated for the relevant component, e.g. the Health Score Modifier for the paintwork component is applied to the Initial Health Score for the paintwork component in order to calculate the Current Health Score for the paintwork component.
- iv) A current Ageing Rate, β_2 is separately calculated for each of the three components, using the approach described in Section 6.1.8. For each component, the age used in the calculation of β_2 shall be the same age that was used in the calculation of the Initial Health Score.
- v) A Future Health Score shall be calculated for each of the three components using Eq. 10, as described in Section 6.1.10. For each component the Current Health Score and value of β_2 , relating to that component, shall be used in the determination of the Future Health Score.

The Current Health Score of the Tower shall be taken as the maximum of the Current Health Score of the steelwork, the Current Health Score of the paintwork and the Current Health Score of the foundations.

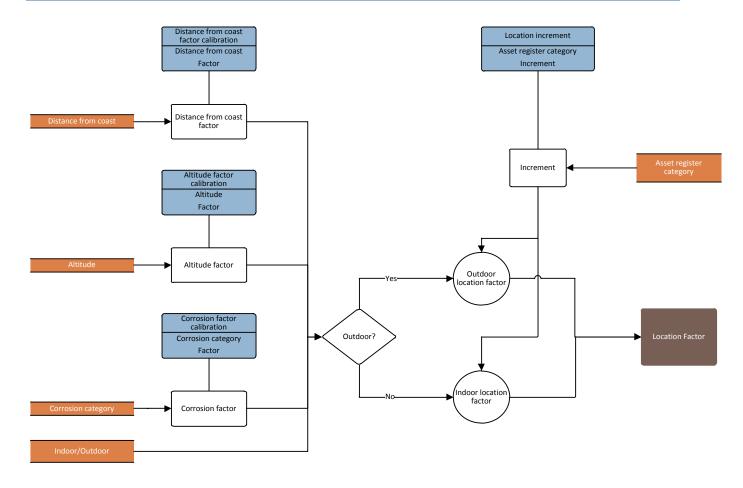
¹ The primary age of the Tower steelwork will be that of the Tower itself, accepting that some of the steelwork may have been replaced piecemeal in later years

Similarly, the Future Health Score of the Tower shall be taken as the maximum of the Future Health Score of the steelwork, the Future Health Score of the paintwork and the Future Health Score of the foundations.

The Probability of Failure for the overall Tower shall be determined by application of Eq. 1 (Section 6.1.1) to the overall Health Score (i.e. the maximum Health Score across the three subcomponents).

6.4 Location Factor (General)

6.4.1 Overview


The Expected Life of an asset is affected by the environment in which the asset is installed. For example, assets exposed to higher levels of moisture or pollution may be expected to degrade quicker than assets of the same type exposed to lower levels of moisture or pollution. The levels of exposure will depend upon the location of the asset and also whether, or not, it is installed within an enclosure that affords protection from the weather.

This effect is recognised by the use of an asset specific Location Factor in the determination of the Expected Life for individual assets. For all Asset Categories, except LV UGB and Cable, this Factor is influenced by:-

- i) distance from coast;
- ii) altitude:
- iii) corrosion category; and
- iv) environment (indoor / outdoor)

Different factors are considered in the derivation of an asset specific Location Factor for submarine cable assets. These are explained in Section 6.5.

For LV UGB assets and all non-submarine cable assets (i.e. cables installed on land), a Location Factor of 1 shall be assigned to all assets.

FIGURE 9: LOCATION FACTOR

6.4.2 Distance from Coast Factor

The Distance from Coast Factor will be determined based upon the distance of the asset (or its substation location) from the coast, measured in km. The Distance from Coast Factor shall be applied as shown in Table 20 in Appendix B.

6.4.3 Altitude Factor

An Altitude Factor will be determined based upon the altitude of the asset (or its substation location, measured in metres). The derivation of Altitude Factor is based on a look up table using bandings of altitude. The Altitude Factor shall be applied as shown in Table 21 in Appendix B.

6.4.4 Corrosion Factor

A Corrosion Factor will be determined based on the Corrosion Category Index (1-5) for the location of the asset. The Corrosion Factor shall be applied as shown in Table 22 in Appendix B.

6.4.5 Determining the Location Factor for assets in an outdoor environment

Where an asset is installed in an outdoor environment, the Location Factor will be determined as follows:-

i) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion Factor is greater than 1:-

Location Factor

= MAX(Distance From Coast Factor, Altitude Factor, Corrosion Factor)

 $((COUNT \text{ of factors greater than } 1) - 1) \times INC$

(Eq. 11)

Where:

- INC is the increment constant for the asset type (shown in Table 23)
- ii) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion Factor is not greater than 1:-

Location Factor

= MIN(Distance From Coast Factor, Altitude Factor, Corrosion Factor)

(Eq. 12)

6.4.6 Determining the Location Factor for assets in an indoor environment

Where an asset is installed in an indoor environment, the Location Factor will be determined as follows:-

i) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion Factor is greater than 1:-

Initial Location Factor

- = MAX(Distance From Coast Factor, Altitude Factor, Corrosion Factor)
- $+(((COUNT of factors greater than 1) 1) \times INC$

(Eq. 13)

Where:

- INC is the increment constant for the asset type (shown in Table 23)
- ii) If the maximum of the Distance From Coast Factor, Altitude Factor and Corrosion Factor is not greater than 1:-

Initial Location Factor

= MIN(Distance From Coast Factor, Altitude Factor, Corrosion Factor)

(Eq. 14)

iii) Steps (i) and (ii) are the same as for an asset in an outdoor environment. This additional step recognises the shielding effect of the indoor environment on the asset

in question. The Location Factor is calculated from the Initial Location Factor using Eq. 15.

Location Factor

= 0.25 imes (Initial Location Factor – Minimum Initial Location Factor)

+ Minimum Initial Location Factor

(Eq. 15)

Where:

 Minimum Initial Location Factor is the value of Initial Location Factor that would be determined if all location factors (i.e. Distance From Coast Factor, Altitude Factor and Corrosion Factor) were at their minimum possible value for the asset type, from the calibration Tables 20 to 22.

6.5 Location Factor (Submarine Cables)

6.5.1 Overview

The Location Factor for Submarine Cable is made up of four factor inputs:

- i) Submarine Cable Route Topography Factor
- ii) Situation Factor
- iii) Wind/Wave Factor
- iv) Combined Wave & Current Energy Factor

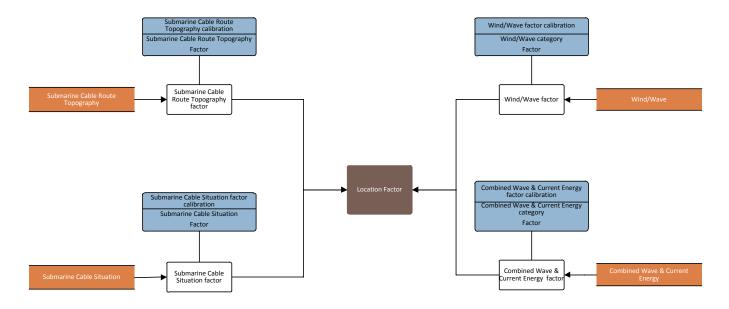


FIGURE 10: LOCATION FACTOR - SUBMARINE CABLES

6.5.2 Submarine Cable Route Topography Factor

The route topography factor considers the nature of the cable route in which the submarine cable has been laid. This considers the seabed makeup, landscape and the potential for cable to be suspended above the seabed.

The value for this factor shall be applied as shown in Table 24 in Appendix B.

6.5.3 Submarine Cable Situation Factor

The Submarine Cable Situation factor takes into account its installed situation: Laid on bed, covered and buried.

The value for this factor shall be applied as shown in Table 25 in Appendix B.

6.5.4 Wind/Wave Factor

The wind and wave environment which submarine cables are subjected to have been identified as directly affecting the severity of mechanical movement (action) on the shore ends. This is captured by the wind/wave factor.

The value for this factor shall be applied as shown in Table 26 in Appendix B.

6.5.5 Combined Wave & Current Energy Factor

The rate at which fretting (abrasion of the cable armour) takes place is heavily dependent upon the amount of energy exerted upon both the cable and the seabed due to waves, tidal currents, or their combined effects. The combined wave and current energy factors takes this into account.

The value for this factor shall be applied as shown in Table 27 in Appendix B.

6.5.6 Determining the Location Factor for Submarine Cables

If the maximum of the Submarine Cable Route Topography Factor, Situation Factor, Wind/Wave Factor, Combined Wave & Current Energy Factor is greater than 1:-

Location Factor

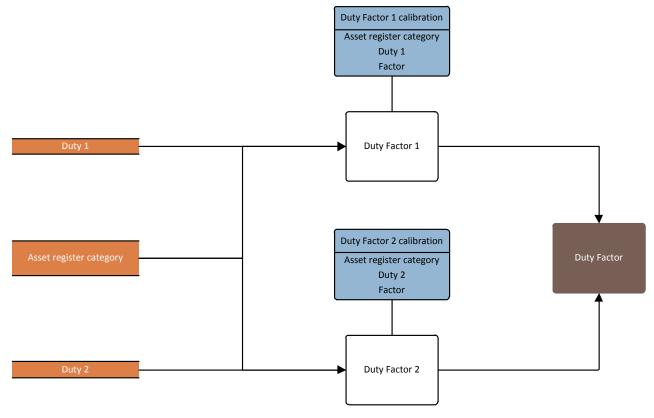
- = MAX(Submarine Cable Route Topography Factor, Situation Factor, Wind /Wave Factor, Combined Wave & Current Energy Factor)
- + $((COUNT of factors greater than 1) 1) \times INC)$

(Eq. 16)

Where:

• INC is the increment constant for the asset type (Table 23, Appendix B)

If the maximum of the Submarine Cable Route Topography Factor, Situation Factor, Wind/Wave Factor, Combined Wave & Current Energy Factor is not greater than 1:-


Location Factor

= MIN(Submarine Cable Route Topography Factor, Situation Factor, Wind /Wave Factor, Combined Wave & Current Energy Factor)

(Eq. 17)

6.6 Duty Factor

The Expected Life of an asset varies depending upon the duty to which it is subjected.

FIGURE 11: DUTY FACTOR

For electrical assets, the duty factor is a function of loading, number of operations, design voltage and operating voltage. Table 7 shows how these factors are to be applied to the different Asset Categories:

TABLE 7: DUTY FACTOR METHODOLOGY

Asset Category	ory Duty Factor 1 (DF1) Duty Factor		
Cables	% Utilisation	Operating Voltage ÷ Design Voltage	
Poles	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
LV UGB	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
Switchgear - LV	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
Switchgear - HV Distribution	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
Switchgear - HV Primary	Number of Operations	N/A	
Switchgear - EHV & 132kV	Number of Operations		
Steel Tower	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
Conductor	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
Fittings	No asset specific Duty Factor 1 (i.e. DF1 = 1)	N/A	
HV Transformer (GM)	% Utilisation	N/A	
Transformers - EHV & 132kV	Transformer: % Utilisation	N/A	
	Tapchanger: Average Number of Daily Tapping Operations	N/A	

Where there is only a single Duty Factor, then:-

$$Duty Factor = DF1 (Eq. 18)$$

Where two Factors are combined to create the Duty Factor, then:-

Duty Factor =
$$0.5 \times DF1 + 0.5 \times DF2$$
 (Eq. 19)

The Duty Factor lookup tables which will be applied to the respective Asset Categories are shown in Table 28 to Table 31.

6.7 Health Score Modifier

6.7.1 Overview

Asset specific Health Score Modifiers are calculated for each individual asset. The Health Score Modifier is determined from observed condition and measurement results. The Health Score Modifier is used to inform the Current Health Score, such that it reflects the observed health of the asset.

For all Health Index Asset Categories, with the exception of EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers, a single Health Score Modifier is calculated for each asset. The calculation of Health Score for assets in the EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers Asset Categories requires separate evaluation of the Health Score for a number of subcomponents. Consequently, for these Asset Categories, separate Health Score Modifiers are evaluated for each subcomponent. In such cases, the appropriate Health Score Modifier is applied to determine the Current Health Score for each subcomponent of the asset.

The Health Score Modifier consists of three elements:-

- i) a Health Score Factor, which is a multiplication factor, derived from Condition Modifiers, that is applied to the Initial Health Score;
- ii) a Health Score Cap, which is a maximum limit that is applied to the product of the Initial Health Score and the Health Score Factor; and
- iii) a Health Score Collar, which is a minimum limit that is applied to the product of the Initial Health Score and the Health Score Factor

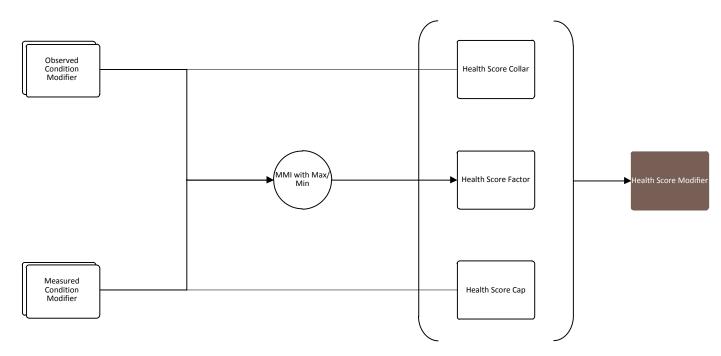


FIGURE 12: HEALTH SCORE MODIFIER

For assets, other than those in the EHV Transformer and 132kV Transformer Health Index Asset Categories, the Health Score Modifier is determined by combining:-

- i) an Observed Condition Modifier, based upon Observed Condition Inputs (such as condition assessment observations); and
- ii) a Measured Condition Modifier, based upon Measured Condition Inputs.

The derivation of the Observed Condition Modifier and Measured Condition Modifier are described in Sections 6.9 and 6.10. Like the Health Score Modifier, each of these Condition Modifiers is comprised of three elements, i.e.:-

- i) a Condition Factor, which is a value associated with an observation or measurement, used to derive the Health Score Factor
- ii) a Condition Cap, which is a maximum limit that is used to derive the Health Score Cap; and
- iii) a Condition Collar, which is a minimum limit that is used to derive the Health Score Collar.

The derivation of the Health Score Modifier for the EHV Transformer and 132kV Transformer Asset Categories is described separately in Section 6.8.

In determining the Health Score Modifier, only the Condition Modifiers (and associated Condition Inputs) specified within the Methodology shall be applied. In recognition of different inspection and assessment approaches between DNOs:-

- i) There is no requirement for data to be collected to apply all the Condition Inputs specified within the Methodology. Where DNOs do not have data available to determine a specific Condition Input, the default values for that Condition Input (as specified in the calibration table for that Condition Input) shall be applied.
- ii) The calibration tables for each Condition Input (Appendices B.5 and B.6) are defined in terms of the outcomes or conclusions drawn from the relevant condition assessments or tests and are common to all DNOs. Where required, DNOs shall

map data from their own systems against the relevant criteria shown on the calibration tables. This enables common Condition Inputs to be determined for all DNOs without specifying the exact format of data that is collected in each individual DNOs inspection and assessment regimes.

iii) It will be permissible for DNOs to combine multiple measurements or observations from their own data set (or adjust for elapsed time since the condition data was collected) in their mapping to an individual Condition Input.

6.7.2 Combining Factors Using a Modified Maximum and Increment (MMI) Technique

The Condition Factors, which form part of the Condition Modifiers, are combined together to derive the Health Score Factor using a technique that is referred to as "modified maximum and increment". The calculation of the Health Score Modifier is described in Section 6.7.3.

Each specific Condition Factor is derived from multiple Condition Input Factors, which come from associated lookup tables that map the observed or measured condition to a Condition Input Factor.

The combination of Condition Inputs to create the Observed Condition Modifier and the Measured Condition Modifier is described in Sections 6.9 and 6.10. This also uses an MMI approach.

By using the MMI approach throughout, this ensures that the Health Score Factor is primarily driven by the strongest observed or measured Condition Input Factor, supplemented to a lesser and controlled degree by any additional Condition Input Factors (depending on their strength).

This approach enables a single methodology to be applied to all asset groups, with the variation between asset groups captured through calibration factors.

The combination of multiple Factors into a single Modifier using the MMI technique is described below:-

If any of the Factors is greater than 1:

- Var_1 = Maximum of Factors
- Var 2 = Excluding Var 1,
 - For remaining Factors where (Factor 1) > 0
 - \circ Sum (Factor 1) for the highest n-1 of these; where n = Max. No. of Combined Factors
- Var_3 = Var_2 / Factor Divider 1
- Combined Factor = Var_1 + Var_3
- o Else
 - Var 1 = Minimum of Factors
 - Var 2 = 2nd Lowest of Factors
 - Var_3 = (Var_2 1) / Factor Divider 2
 - Combined Factor = Var 1 + Var 3

Where:

- Max. No. of Combined Factors specifies how many Factors are able to simultaneously affect the Combined Factor.
- Factor Divider 1 and Factor Divider 2 are constants that specify the degree to which additional "good" or "bad" Factors are able further drive the Combined Factor.

A case statement description of this algorithm is demonstrated below.

Case 1: one or more Factors > 1

- Factors = 1.2, 1.0, 1.1, 1.02, 0.9, Max. No of Combined Factors = 4, Factor Divider 1 and Factor Divider 2 = 2
- Var 1 = maximum of Factors = Max(1.2, 1.0, 1.1, 1.02, 0.9) = 1.2
- Var 2 = sum remaining Factors where Factor 1 > 0 = (1.1-1) + (1.02 1) = 0.12
- Var 3 = Var 2 / Factor Divider 1 = 0.12 / 2 = 0.06
- Combined Factor = Var 1 + Var 3 = 1.2 + 0.06 = 1.26

Case 2: all Factors ≤ 1

- Factors = 1, 1, 0.8, 1, 0.9, Max. No of Combined Factors = 4, Factor Divider 1 and Factor Divider 2 = 2
- Var 1 = minimum of Factors = Min(1, 1, 0.8, 0.9) = 0.8
- $Var 2 = 2^{nd}$ minimum of Factors = 2^{nd} Min(1, 1, 0.8, 0.9) = 0.9
- Var 3 = (Var 2 1) / Factor Divider 2 = (0.9 1) / 2 = -0.05
- Combined Factor = Var 3 + Var 1 = 0.8 + -0.05 = 0.75

6.7.3 Health Score Factor Calculation

The Health Score Factor is a multiplier that is applied to the Initial Health Score.

The Observed and Measured Condition Factors are combined to derive the Health Score Factor using the "modified maximum and increment" technique described in Section 6.7.2.

For assets, other than those in the EHV Transformer and 132kV Transformer Health Index Asset Categories, Factor Divider 1 and Factor Divider 2 have a value of 1.5 and the Max. No. of Combined Factors is 2. This means that the description of the combination method can be simplified to:-

- i) The Health Score Factor, for an individual asset, is determined by evaluating:-
 - the maximum of the Observed Condition Factor and the Measured Condition Factor for the asset; and
 - the minimum of the Observed Condition Factor and the Measured Condition Factor for the asset.
- ii) The calculation used to determine the Health Score Factor is dependent upon the magnitudes of the maximum and minimum Condition Factors. The Health Score Factor shall be calculated as shown in Table 8.

TABLE 8: HEALTH SCORE FACTOR

a = Maximum of (Observed Condition Factor, Measured Condition Factor)	b = Minimum of (Observed Condition Factor, Measured Condition Factor)	Health Score Factor
>1 >1		= a + ((b-1)/1.5)
>1	≤1	= a
≤1	≤1	= b + ((a-1)/1.5)

The derivation of the Health Score Factor for the EHV Transformer and 132kV Transformer Asset Categories is described, separately, in Section 6.8.

6.7.4 Health Score Cap

For assets, other than those in the EHV Transformer and 132kV Transformer Health Index Asset Categories, the Health Score Cap is the minimum of:-

- i) The Observed Condition Cap associated with the Observed Condition Modifier
- ii) The Measured Condition Cap associated with the Measured Condition Modifier

The derivation of the Condition Caps associated with the Observed and Measured Condition Modifiers is described in Sections 6.9.3 and 6.10.3 respectively.

The derivation of the Health Score Cap for the EHV Transformer and 132kV Transformer Asset Categories is described in Section 6.8.

6.7.5 Health Score Collar

For assets, other than those in the EHV Transformer and 132kV Transformer Health index Asset Categories, the Health Score Collar is the maximum of:-

- i) The Observed Condition Collar associated with the Observed Condition Modifier
- ii) The Measured Condition Collar associated with the Measured Condition Modifier

The derivation of the Condition Collars associated with the Observed and Measured Condition Modifiers is described in Sections 6.9.4 and 6.10.4 respectively.

The derivation of the Health Score Collar for the EHV Transformer and 132kV Transformer Asset Categories is described in Section 6.8.

6.8 Health Score Modifier for EHV and 132kV Transformers

6.8.1 Main Transformer

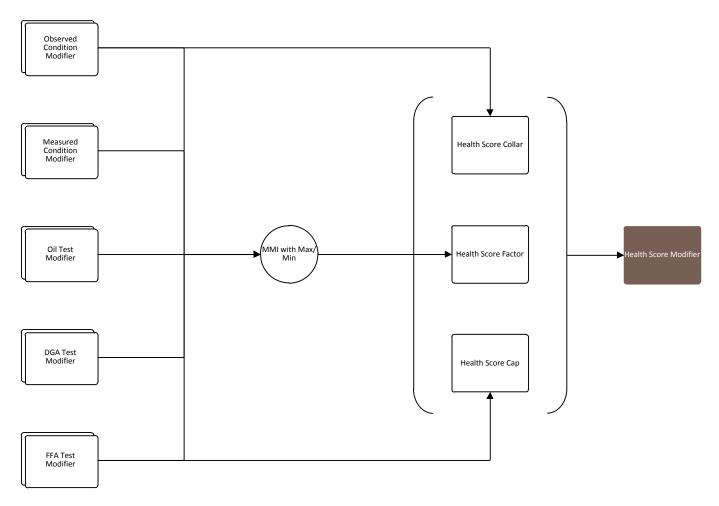


FIGURE 13: HEALTH SCORE MODIFIER - MAIN TRANSFORMER

The Health Score Modifier for EHV and 132kV Transformers is derived in exactly the same way as for a generic Health Score Modifier, apart from the following differences:

- i) There are three additional Condition Modifiers to the model: the Oil Test Modifier, the DGA Test Modifier and the FFA Test Modifier.
- ii) The parameters used to combine the Factors associated with these Condition Modifiers in order to derive the Health Score Factor shall be as shown in Table 9.

TABLE 9: HEALTH SCORE FACTOR FOR TRANSFORMERS

Parameters for Combination Using Modified Maximum and Increment Technique					
Factor Divider 1 Factor Divider 2 Max. No. of Condition Factors					
1.5 1.5 4					

These additional inputs enable the Health Score of the Main Transformer component to be determined with greater accuracy.

6.8.2 Tapchanger

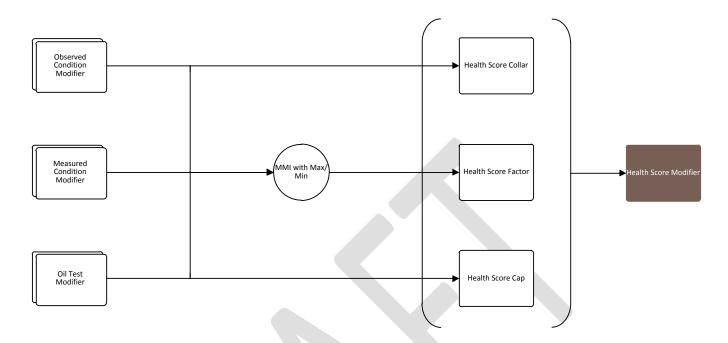


FIGURE 14: HEALTH SCORE MODIFIER - TAPCHANGER

The Health Score Modifier for a Transformer Tapchanger (where the Health Score needs to be separately determined) is derived in exactly the same way as for a generic Health Score Modifier, apart from the following differences:

- There is an additional Condition Modifier to the model: the Oil Test Modifier.
- ii) The parameters used to combine the Factors associated with these Condition Modifiers in order to derive the Health Score Factor shall be as shown in Table 10.

TABLE 10: HEALTH SCORE FACTOR FOR TAPCHANGERS						
Parameters for Combination Using Modified Maximum and Increment Technique						
Factor Divider 1 Factor Divider 2 Max. No. of Condition Factors						
1.5 1.5 2						

This additional input enables the Health Score of the Power Transformer Tapchanger to be determined with greater accuracy.

6.9 Observed Condition Modifier

6.9.1 Overview

The Observed Condition Modifier is used in the determination of the Health Score Modifier.

An asset specific Observed Condition Modifier is determined for each individual asset. For all Health Index Asset Categories, with the exception of EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers, a single Observed Condition Modifier is calculated for each asset.

The calculation of Health Score for assets in the EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers Health Index Asset Categories requires separate evaluation of the Health Score for subcomponents of these assets. Consequently, for these Asset Categories, separate Observed Condition Modifiers are evaluated for each subcomponent associated with each asset.

This Condition Modifier is based upon observed condition.

The Observed Condition Modifier consists of three components, i.e.:-

- i) an Observed Condition Factor, which used in the derivation of the Health Score Factor;
- ii) an Observed Condition Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) an Observed Condition Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar

Multiple Observed Condition Inputs are used to derive the Observed Condition Modifier. Each Observed Condition Input consists of three elements:-

- i) a Condition Input Factor;
- ii) a Condition Input Cap; and
- iii) a Condition Input Collar

The Condition Input Factors are used to derive the Observed Condition Factor using the MMI technique described in Section 6.7.2. Each Condition Input Cap is used in the derivation of the Observed Condition Cap and each Condition Input Collar is used in the derivation of the Observed Condition Collar.

The calibration tables relating to each of the Observed Condition Inputs are shown in Table 32 to Table 128 in Appendix B. The values assigned to each Condition Input, for a particular asset, are determined by looking up the relevant Condition Input values that corresponds to the DNO's data for that asset.

FIGURE 15: OBSERVED CONDITION MODIFIER

Table 11 shows the Observed Condition Inputs that are included in the determination of the Observed Condition Modifier for each Asset Category.

TABLE 11: OBSERVED CONDITION INPUTS

Asset Category	Subcomponent Subcomponent	Observed Condition Input
LV UGB	N/A	1. Steel Cover and Pit condition 2. Water/Moisture 3. Bell Condition 4. Insulation Condition 5. Signs of heating 6. Phase Barriers
LV Circuit Breaker	N/A	Switchgear external condition
LV Board (WM)	N/A	Switchgear external condition Compound Leaks Switchgear internal condition
LV Pillars	N/A	Switchgear external condition Compound Leaks Switchgear internal condition Insulation Signs of Heating Phase Barriers
HV Switchgear(GM) - Primary	N/A	Switchgear external condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment

Asset Category	Subcomponent	Observed Condition Input
HV Switchgear (GM) - Distribution	N/A	Switchgear external condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment
EHV Switchgear (GM)	N/A	Switchgear external condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment Support Structures
132kV Switchgear (GM)	N/A	Switchgear external condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment Support Structures Air systems
HV Transformer (GM)	N/A	Transformer external condition
EHV Transformer (GM)	Main Transformer	Main tank condition Coolers/Radiator condition Bushings condition Kiosk condition Cable boxes condition
	Tapchanger	Tapchanger external condition Internal Condition Drive Mechanism Condition Condition of Selector & Divertor Contacts Condition of Selector & Divertor Braids
4001V Transfermer (CM)	Main Transformer	Main tank condition Coolers/Radiator condition Bushings condition Kiosk condition Cable boxes condition
132kV Transformer (GM)	Tapchanger	Tapchanger external condition Internal Condition Drive Mechanism Condition Condition of Selector & Divertor Contacts Condition of Selector & Divertor Braids
EHV Cable (Non Pressurised)	N/A	None
EHV Cable (Oil)	N/A	None
EHV Cable (Gas)	N/A	None
132kV Cable (Non Pressurised)	N/A	None
132kV Cable (Oil)	N/A	None
132kV Cable (Gas)	N/A	None
Submarine Cable	N/A	External Condition of Armour
LV Poles	N/A	1. Visual Pole Condition 2. Pole Top Rot 3. Pole Leaning 4. Bird / Animal Damage

Asset Category	Subcomponent	Observed Condition Input
HV Poles	N/A	1. Visual Pole Condition 2. Pole Top Rot 3. Pole Leaning 4. Bird / Animal Damage
EHV Poles	N/A	1. Visual Pole Condition 2. Pole Top Rot 3. Pole Leaning 4. Bird / Animal Damage
EHV Towers	Tower Steelwork	1. Tower Legs 2. Bracings 3. Crossarms 4. Peak
	Tower Paintwork	1. Paintwork Condition
	Foundations	1. Foundation Condition
132kV Towers	Tower Steelwork	1. Tower Legs 2. Bracings 3. Crossarms 4. Peak
	Tower Paintwork	1. Paintwork Condition
	Foundations	1. Foundation Condition
EHV Fittings	N/A	Tower fittings Conductor fittings Insulators - Electrical Insulators - Mechanical
132kV Fittings	N/A	Tower fittings Conductor fittings Insulators - Electrical Insulators - Mechanical
EHV Tower Line Conductor	N/A	Visual Condition Midspan joints
132kV Tower Line Conductor	N/A	Visual Condition Midspan joints

6.9.2 Observed Condition Factor

The Observed Condition Factor is used in the derivation of the Health Score Factor.

For each asset, multiple Observed Condition Input Factors are combined to create the Observed Condition Factor. These Observed Condition Input Factors are combined using the modified maximum and increment technique that is described in Section 6.7.2.

Table 12 shows the parameters that shall be used when combining the Observed Condition Input Factors using the modified maximum and increment technique.

TABLE 12: OBSERVED CONDITION MODIFIER - MMI CALCULATION PARAMETERS

	ED CONDITION MODIFIE	Parameters	Parameters for Combination Using Modified Maximum and Increment Technique		
Asset Category	Subcomponent	Factor Divider 1	Factor Divider 2	Max. No. of Combined Factors	
LV UGB	N/A	1.5	1.5	3	
LV Circuit Breaker	N/A	1.5	1.5	1	
LV Board (WM)	N/A	1.5	1.5	2	
LV Pillars	N/A	1.5	1.5	3	
HV Switchgear(GM) - Primary	N/A	1.5	1.5	3	
HV Switchgear (GM) - Distribution	N/A	1.5	1.5	3	
EHV Switchgear (GM)	N/A	1.5	1.5	3	
132kV Switchgear (GM)	N/A	1.5	1.5	3	
HV Transformer (GM)	N/A	1.5	1.5	1	
FLIV/ Transformer (CM)	Main Transformer	1.5	1.5	1	
EHV Transformer (GM)	Tapchanger	1.5	1.5	3	
42211/ Transferred (CM)	Main Transformer	1.5	1.5	1	
132kV Transformer (GM)	Tapchanger	1.5	1.5	3	
EHV cable (non pressurised)	N/A	N/A	N/A	N/A	
EHV cable (oil)	N/A	N/A	N/A	N/A	
EHV cable (gas)	N/A	N/A	N/A	N/A	
132kV cable (non pressurised)	N/A	N/A	N/A	N/A	
132kV cable (oil)	N/A	N/A	N/A	N/A	
132kV cable (gas)	N/A	N/A	N/A	N/A	
Submarine cable	N/A	1.5	1.5	1	
LV Poles	N/A	1.5	1.5	3	
HV Poles	N/A	1.5	1.5	3	
EHV Poles	N/A	1.5	1.5	3	
	Tower Steelwork	1.5	1.5	3	
EHV Towers	Tower Paintwork	1.5	1.5	1	
	Foundations	1.5	1.5	1	
	Tower Steelwork	1.5	1.5	3	
132kV Towers	Tower Paintwork	1.5	1.5	1	
	Foundations	1.5	1.5	1	
EHV Fittings	N/A	1.5	1.5	3	
132kV Fittings	N/A	1.5	1.5	3	
EHV Tower Line Conductor	N/A	1.5	1.5	1	
132kV Tower Line Conductor	N/A	1.5	1.5	1	

6.9.3 Observed Condition Cap

The Observed Condition Cap for an asset is the minimum value of Condition Input Cap associated with each of the Observed Condition Inputs relating to that asset (as shown in the calibration tables for Observed Condition Inputs in Appendix B).

6.9.4 Observed Condition Collar

The Observed Condition Collar for an asset is the maximum value of Condition Input Collar associated with each of the Observed Condition Inputs relating to that asset (as shown in the calibration tables for Observed Condition Inputs in Appendix B).

6.9.5 Observed Condition Modifier for Cable Assets

There are no Observed Condition Inputs for cable assets other than Submarine Cables. For these assets:-

- i) the Observed Condition Factor shall be set to 1;
- ii) the Observed Condition Cap shall be 10; and
- iii) the Observed Condition Collar shall be 0.5

6.10 Measured Condition Modifier

6.10.1 Overview

The Measured Condition Modifier is used in the determination of the Health Score Modifier.

An asset specific Measured Condition Modifier is determined for each individual asset.

For all Health Index Asset Categories, with the exception of EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers, a single Measured Condition Modifier is calculated for each asset.

The calculation of Health Score for assets in the EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers Health Index Asset Categories requires separate evaluation of the Health Score for subcomponents of these assets. Consequently, for these Asset Categories, separate Measured Condition Modifiers are evaluated for each subcomponent associated with each asset.

This Condition Modifier is based upon measured condition.

The Measured Condition Modifier consists of three components, i.e.:-

- i) a Measured Condition Factor, which is used in the derivation of the Health Score Factor;
- ii) a Measured Condition Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) a Measured Condition Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

Multiple Measured Condition Inputs are used to derive the Measured Condition Modifier. Each Measured Condition Input consists of three elements:-

- i) a Condition Input Factor;
- ii) a Condition Input Cap; and
- iii) a Condition Input Collar

The Condition Input Factors are used to derive the Measured Condition Factor using the MMI technique described in Section 6.7.2. Each Condition Input Cap is used in the derivation of the Measured Condition Cap and each Condition Input Collar is used in the derivation of the Measured Condition Collar.

The calibration tables relating to each of the Measured Condition Inputs are shown in Appendix B. The values assigned to each Condition Input for a particular asset are determined by looking up the relevant Condition Input values that corresponds to the DNOs data for that asset.

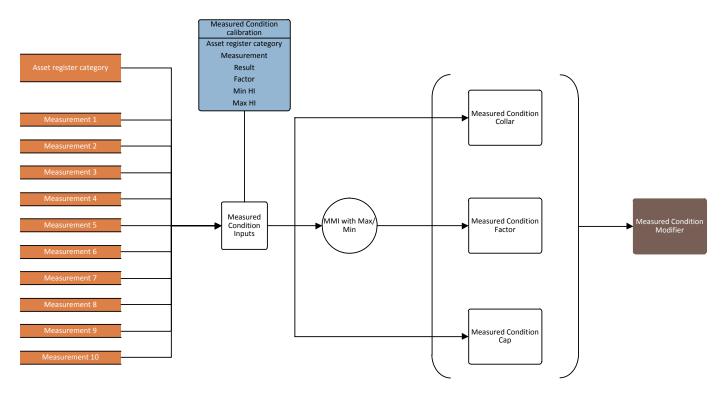


FIGURE 16: MEASURED CONDITION MODIFIER

Table 13 shows the Measured Condition Inputs that are included in the determination of the Measured Condition Modifier for each Asset Category.

Asset Category	Subcomponent	Measured Condition Input
LV UGB	N/A	1. Operational Adequacy
LV Circuit Breaker	N/A	1. Operational Adequacy
LV Board (WM)	N/A	Operational Adequacy Security
LV Pillars	N/A	1. Operational Adequacy
HV Switchgear - Primary	N/A	Partial Discharge Ductor Test IR Test Oil Tests Temperature Readings Trip Test
HV Switchgear (GM) - Distribution	N/A	Partial Discharge Ductor Test Oil Tests Temperature Readings Trip Test

TABLE 13: MEASURED CONDITION INDUITS

Asset Category	Subcomponent	Measured Condition Input	
EHV Switchgear (GM)	N/A	1. Partial Discharge 2. Ductor Test 3. IR Test 4. Oil Tests/ Gas Tests 5. Temperature Readings 6. Trip Test	
132kV Switchgear (GM)	N/A	1. Partial Discharge 2. Ductor Test 3. IR Test 4. Oil Tests/ Gas Tests 5. Temperature Readings 6. Trip Test	
HV Transformer (GM)	N/A	Partial Discharge Oil Acidity Temperature Readings	
EHV Transformer (GM)	Main Transformer	Partial Discharge Temperature Readings	
	Tapchanger	Tapchanger Partial Discharge	
132kV Transformer	Main Transformer	Partial Discharge Temperature Readings	
	Tapchanger	Tapchanger Partial Discharge	
EHV cable (non pressurised)	N/A	Sheath Test Partial Discharge Fault history	
EHV cable (oil)	N/A	Partial Discharge Leakage	
EHV cable (gas)	N/A	Partial Discharge Leakage	
132kV cable (non pressurised)	N/A	Sheath Test Partial Discharge Fault history	
132kV cable (oil)	N/A	Partial Discharge Leakage	
132kV cable (gas)	N/A	Partial Discharge Leakage	
Submarine cable	N/A	Sheath Test Partial Discharge Fault history	
LV Poles	N/A	Pole decay / deterioration	
HV Poles	N/A	1. Pole decay / deterioration	
EHV Poles	N/A	1. Pole decay / deterioration	
	Tower Steelwork	None	
EHV Towers	Tower Paintwork	None	
	Foundations	None	
	Tower Steelwork	None	
132kV Towers	Tower Paintwork	None	
	Foundations	None	
EHV Fittings	N/A	Thermal Imaging Ductor Tests	
132kV Fittings N/A		Thermal Imaging Ductor Tests	

Asset Category	Subcomponent	Measured Condition Input
EHV Tower Line Conductor	N/A	Conductor Sampling Corrosion Monitoring Survey
132kV Tower Line Conductor	N/A	Conductor Sampling Corrosion Monitoring Survey

6.10.2 Measured Condition Factor

The Measured Condition Factor is used in the derivation of the Health Score Factor.

For each asset, multiple Measured Condition Input Factors are combined to create the Measured Condition Factor. These Measured Condition Input Factors are combined using the modified maximum and increment technique that is described in Section 6.7.2.

Table 14 shows the parameters that shall be used when combining the Measured Condition Factors using the modified maximum and increment technique.

TABLE 14: MEASURED CONDITION MODIFIER - MMI CALCULATION PARAMETERS

Accest C :		Parameters for Combination Using Modified Maximum and Increment Technique		
Asset Category	Subcomponent	Factor Divider 1	Factor Divider 2	Max. No. of Combined Factors
LV UGB	N/A	1.5	1.5	1
LV Circuit Breaker	N/A	1.5	1.5	2
LV Board (WM)	N/A	1.5	1.5	2
LV Pillars	N/A	1.5	1.5	1
HV Switchgear - Primary	N/A	1.5	1.5	3
HV Switchgear (GM) - Distribution	N/A	1.5	1.5	3
EHV Switchgear (GM)	N/A	1.5	1.5	3
132kV Switchgear (GM)	N/A	1.5	1.5	3
HV Transformer (GM)	N/A	1.5	1.5	2
CLIV/ Transformer (CM)	Main Transformer	1.5	1.5	2
EHV Transformer (GM)	Tapchanger	1.5	1.5	3
	Main Transformer	1.5	1.5	2
132kV Transformer (GM)	Tapchanger	1.5	1.5	3
EHV Cable (Non Pressurised)	N/A	1.5	1.5	2
EHV Cable (Oil)	N/A	1.5	1.5	1
EHV Cable (Gas)	N/A	1.5	1.5	1
132kV Cable (Non Pressurised)	N/A	1.5	1.5	2
132kV cable (Oil)	N/A	1.5	1.5	1
132kV cable (Gas)	N/A	1.5	1.5	1
Submarine Cable	N/A	1.5	1.5	2
LV Poles	N/A	1.5	1.5	1
HV Poles	N/A	1.5	1.5	1
EHV Poles	N/A	1.5	1.5	1
	Tower Steelwork	N/A	N/A	N/A
EHV Towers	Tower Paintwork	N/A	N/A	N/A
	Foundations	N/A	N/A	N/A
	Tower Steelwork	N/A	N/A	N/A
132kV Towers	Tower Paintwork	N/A	N/A	N/A
	Foundations	N/A	N/A	N/A
EHV Fittings	N/A	1.5	1.5	1

Asset Category	Subcomponent	Parameters for Combination Using Modified Maximum and Increment Technique		
		Factor Divider 1	Factor Divider 2	Max. No. of Combined Factors
132kV Fittings	N/A	1.5	1.5	1
EHV Tower Line Conductor	N/A	1.5	1.5	1
132kV Tower Line Conductor	N/A	1.5	1.5	1

6.10.3 Measured Condition Cap

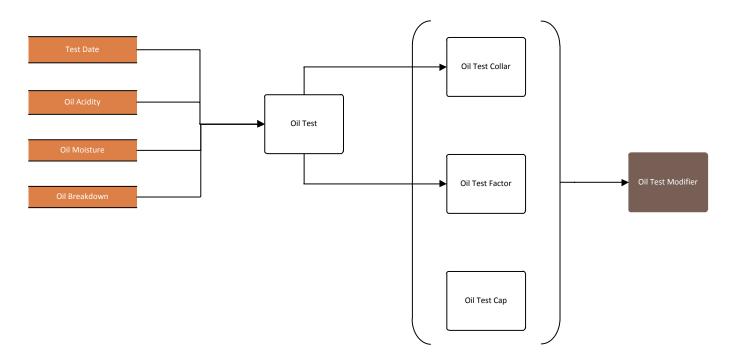
The Measured Condition Cap for an asset is the minimum value of Condition Input Cap associated with each of the Measured Condition Inputs relating to that asset (as shown in the calibration tables for Measured Condition Inputs in Appendix B).

6.10.4 Measured Condition Collar

The Measured Condition Collar for an asset is the maximum value of Condition Input Collar associated with each of the Measured Condition Inputs relating to that asset (as shown in the calibration tables for Measured Condition Inputs in Appendix B).

6.10.5 Measured Condition Modifier for Steel Towers (Structure Only)

There are no Measured Condition Inputs for Steel Towers (Steelwork, Paint or Foundation components). For these assets:-


- i) the Measured Condition Factor shall be set to 1;
- ii) the Measured Condition Cap shall be 10; and
- iii) the Measured Condition Collar shall be 0.5

6.11 Oil Test Modifier

The Oil Test Modifier is derived from the oil condition information (moisture content, acidity and breakdown strength) [Ref. 2]. It provides additional information to determine the Health Score when oil condition test data is available. This test data can be used to identify defects or degradation within the asset, and is therefore used to increase the Health Score when necessary.

The Oil Test Modifier consists of three components:-

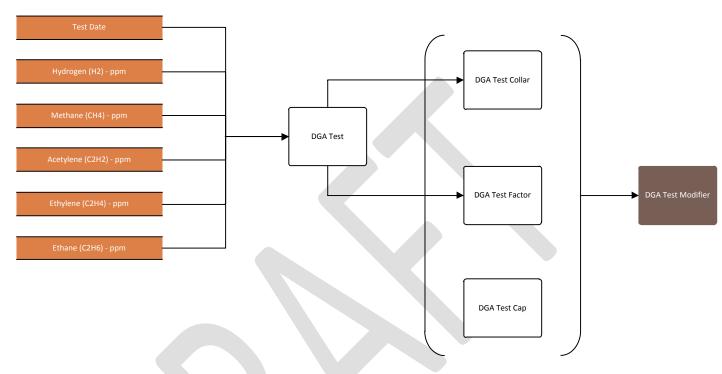
- i) An Oil Test Factor, which used in the derivation of the Health Score Factor;
- ii) an Oil Test Cap, which is a maximum limit of Health Score that used in the derivation of the Health Score Cap; and
- iii) an Oil Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

FIGURE 17: OIL TEST MODIFIER

The process for converting the results into a score and subsequently into an Oil Test Factor, an Oil Test Cap and an Oil Test Collar is as follows:

- The moisture, acidity and breakdown strength results are standardised by converting them into scores using the Condition State calibration tables; respectively Tables 194, 195 and 196 in Appendix B.
- ii) The scores for the three condition points (moisture, breakdown strength and acidity) are then multiplied by the values relative to the importance of the measured condition point and summed to create an Oil Condition Score as shown in Eq. 20.

```
\begin{array}{l} \textbf{Oil Condition Score} \\ = 80 \times \textbf{Moisture Score} + 125 \times \textbf{Acidity Score} \\ + 80 \times \textbf{Breakdown Strength Score} \end{array} \tag{Eq. 20}
```


- iii) The Oil Condition Factor and Oil Test Collar value are then derived using the lookup values shown in Tables 197 and 198 in Appendix B.
- iv) The Oil Test Cap is always set to 10: because oil can be renewed, oil tests are unable to determine the absence of degradation in an asset - only its presence. Therefore the Oil Test Cap cannot be set to less than 10, regardless of the Oil Test result.

6.12 DGA Test Modifier

The DGA Test Modifier is derived from the dissolved gas content in the oil [Ref. 3]. It provides additional information to determine the Health Score when DGA test data is available. This test data can be used to detect abnormal electrical or thermal activity within the asset, and is therefore used to increase the Health Score when necessary.

The DGA Test Modifier consists of three components, i.e.:-

- i) a DGA Test Factor, which is used in the derivation of the Health Score Factor;
- ii) a DGA Test Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) a DGA Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

FIGURE 18: DGA TEST MODIFIER

The diagnostic process described here was developed by EA Technology in conjunction with a number of GB Distribution Network Operators within Module 4 of the Strategic Technology Programme. Of nine gases measured during DGA (namely oxygen, nitrogen, carbon monoxide, carbon dioxide, hydrogen, methane, ethylene, ethane and acetylene) only the latter five were recognised as providing an indication of transformer condition.

Therefore, only the levels of the following gases are used to derive the DGA Test Modifier:

- i) Hydrogen
- ii) Methane
- iii) Ethylene
- iv) Ethane
- v) Acetylene

The gas levels used to produce this modifier are calibrated to give a DGA Test Collar of 7 or greater if there is indication of a potential end of life fault. The result of this analysis is used to determine the DGA Test Collar and the DGA Test Factor. The DGA Test Cap is not used.

The results for each of the five gases are standardised by converting them into scores using condition state calibration tables; these are shown in Tables 199 - 203 in Appendix B.

The condition state scores for the five gases (hydrogen, methane, ethane, ethylene and acetylene) are then multiplied by values relative to the importance of the quantity of each gas measured and summed to create a DGA Score as shown in Eq. 21.

$$DGA \, Score = 50 \times Hydrogen \, Score + 30 \times Methane \, Score \\ + 30 \times Ethylene \, Score + 30 \times Ethane \, Score + 120 \times Acetylene \, Score$$

In order to create a DGA Test Collar in the range of 1 to 10, the DGA Score is divided by a DGA divider value; this is set at 220 as shown in Eq. 22.

DGA Test Collar = DGA Score
$$\div$$
 220 (Eq. 22)

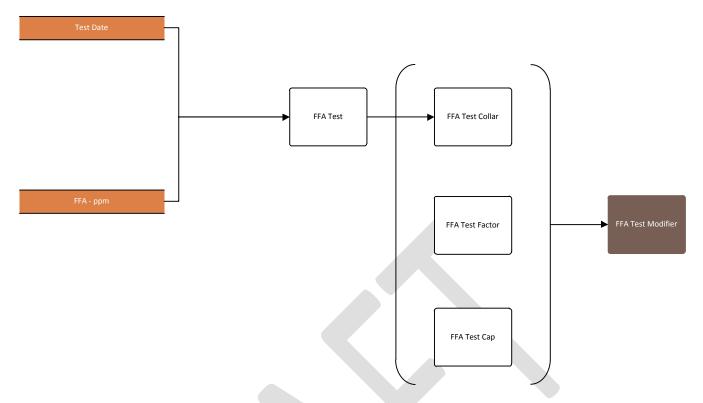
This value is chosen to give a Health Score of 7 at the point where DGA levels are indicative of end of life.

The DGA Test Factor is then created by considering the trend with historical results (over a defined period) for the same asset. The percentage change is derived as shown in Eq. 23.

$$\% \ Change = \frac{DGA \ Score_{latest} - DGA \ Score_{previous}}{DGA \ Score_{latest}} \times 100\% \tag{Eq. 23}$$

This is used to categorise the trend into one of five categories or bands (negative, neutral, small, significant or large), as depicted in calibration Table 204 in Appendix B.

The category or band is then used to assign the DGA Test Factor, using the calibration Table 205 in Appendix B.


The DGA Test Cap is always set to 10: because oil can be renewed, DGA tests are unable to determine the absence of degradation in an asset - only its presence. Therefore the DGA Test Cap cannot be set to less than 10, regardless of the DGA test result.

6.13 FFA Test Modifier

The FFA Test Modifier is derived from the level of furfuraldehyde (FFA) in oil. It provides additional information to determine the Health Score when FFA test data is available. This test data can be used to detect degradation of cellulose paper, and hence residual mechanical strength of insulation within the asset. It is used to increase the Health Score when necessary.

The FFA Test Modifier consists of three components, i.e.:-

- i) an FFA Test Factor, which is used in the derivation of the Health Score Factor;
- ii) an FFA Test Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) an FFA Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

FIGURE 19: FFA TEST MODIFIER

The FFA Test Collar is derived from the furfuraldehyde (FFA) value.

Furfuraldehyde is one of a family of compounds (furans) produced when cellulose (paper) degrades. As the paper ages, the cellulose chains progressively break, reducing the mechanical strength. The average length of the cellulose chains is defined by the degree of polymerisation (DP) which is a measure of the number of Carbon-Carbon bonds or the length of chains making up the paper fibres. In a new transformer, the DP value is approximately 1000. When this is reduced to approximately 250, the paper has very little remaining strength and is at risk of failure during operation.

There is an approximate relationship between the value of furfuraldehyde in the oil and the DP of the paper, which has been established experimentally. A value of 5ppm of FFA is indicative of paper with a DP of approximately 250. For this reason, the FFA Test Collar is calibrated to give a value of 7 for a FFA value of 5; this empirical relationship has been mathematically described as shown in Eq. 24.

FFA Test Collar =
$$2.33 \times S^{0.68}$$
 (Eq. 24)

Where:

• S is the FFA value in ppm.

The FFA test determines the FFA Test Collar only. The FFA Test Factor is always set to 1 and the FFA Test Cap is always set to 10.

6.14 Reliability Modifier

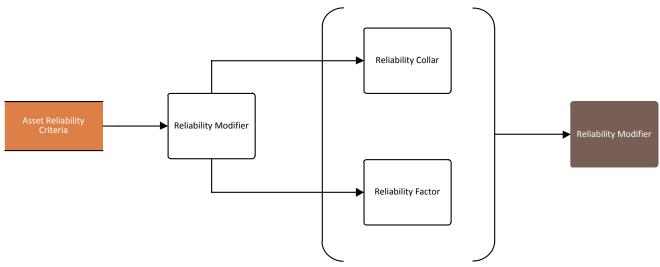


FIGURE 20: RELIABILITY MODIFIER

An additional Reliability Modifier may be applied (at individual DNO discretion) to the Current Health Score of those assets that the individual DNO believes have a materially different Probability of Failure than would be expected for a typical asset within the same Asset Category with the same Health Score, as a result of generic issues that affect health/reliability associated with:-

- i) the make and type of the asset;
- ii) the construction of the asset (e.g. material used or treatment applied).

Typically these issues would have been identified from manufacturer notifications, failure investigations, forensic analysis or as a result of inspections from assets of the same make or type. This recognises that there are wider sources of knowledge about the condition and performance of individual assets.

Where a DNO applies a Reliability Modifier to a particular type of asset, this shall be documented within their own Network Asset Indices Methodology.

The Reliability Modifier may comprise of two separate components:-

- i) a multiplication factor applied in the calculation of the Current Health Score (the Reliability Factor); and
- ii) a Health Score Collar applied as a minimum limit to the Current Health Score (the Reliability Collar).

The Reliability Factor shall be applied as a multiplier to the Current Health Score that is derived from the initial age based Health Score and the Health Score Modifier.

The Reliability Collar shall be applied as a minimum limit to the Health Score that is derived from the initial age based Health Score, the Health Score Modifier and the Reliability Factor (where applied).

The Reliability Factor shall have a value between 0.6 and 1.5 with a default value of 1. The default value for the Reliability Collar shall be 0.5. Each DNO has discretion over whether the Reliability Modifier applied to individual asset types comprises:-

- i) only a Reliability Factor;
- ii) only a Reliability Collar; or
- iii) both.

When applying Reliability Modifiers, individual DNOs may use any appropriate data they have relating to the asset or assets. This will include their own defect databases as well as information gathered as part of the national notification process for:-

- i) National Equipment Defect Reports (NEDeRs);
- ii) Dangerous Incident Notifications (DINs); or
- iii) Suspension of Operational Practice notices (SOPs).

7. CONSEQUENCES OF FAILURE

7.1 Overview

The second key dimension of the Methodology is a consideration of the consequences of asset failure. This is used in combination with an assessment of the probability of asset failure to derive a single value for network risk.

The Methodology breaks the effects of failure down into four Consequence Categories:-

- i) Financial
- ii) Safety
- iii) Environmental
- iv) Network Performance

Each of these is quantified in terms which allow for the monetisation within each Consequence Category. The four values are then simply added to produce an overall Consequences of Failure value.

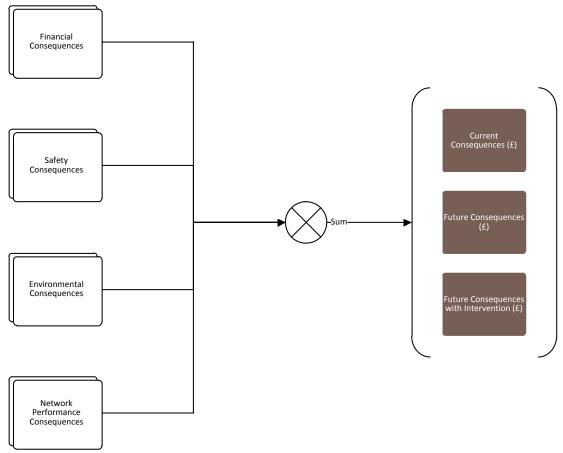


FIGURE 21: CONSEQUENCES OF FAILURE

These are the only Consequence Categories considered within the Methodology.

Consequences of Failure are generally assumed to remain static over time, unless affected by investment or third party actions, hence Current Consequence and forecast Future Consequence values will generally be the same.

Consequences of Failure are based on the same failure modes as Probability of Failure, i.e. Incipient Failure, Degraded Failure and Catastrophic Failure.

The Methodology is based on the production of a Reference Cost of Failure for each asset type which represents the 'typical' effects of a failure. These are common to all DNOs. Asset specific costs are based on the application of specific modifying factors to these reference costs in order to reflect the costs associated with a condition based failure of the asset in question. This process is shown in Figure 22.

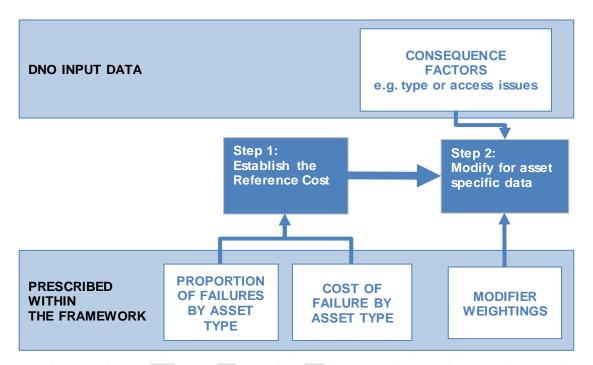


FIGURE 22: COF METHODOLOGY

7.2 Reference Costs of Failure

The following sections set out the process for the production of the Reference Costs of Failure and modifying factors for each of the four Consequence Categories within the Methodology. These costs are shown in Table 15.

TABLE 15: REFERENCE COSTS OF FAILURE

	TABLE 15: REFE	RENCE COSTS O	F FAILURE		
Asset Register Category	Financial	Safety	Environmental	Network Performance	Total
LV Poles	£1,113	£536	£75	£1,208	£2,932
6.6/11kV Poles	£1,592	£179	£75	£1,290	£3,136
20kV Poles	£1,910	£179	£75	£1,290	£3,454
33kV Pole	£2,053	£179	£75	£457	£2,764
66kV Pole	£3,094	£179	£75	£914	£4,262
33kV Tower	£5,618	£334	£155	£7,250	£13,357
66kV Tower	£10,527	£334	£155	£20,770	£31,786
132kV Tower	£12,172	£334	£155	£41,540	£54,201
33kV Fittings	£189	£1,336	£80	£167	£1,772
66kV Fittings	£243	£1,336	£80	£333	£1,992
132kV Fittings	£404	£1,336	£80	£666	£2,486
33kV OHL (Tower Line) Conductor	£719	£1,336	£80	£167	£2,302
66kV OHL Conductor	£954	£1,336	£80	£333	£2,703
132kV OHL (Tower Line) Conductor	£825	£1,336	£80	£666	£2,907
HV Sub Cable	£151,492	£2	£3,000	£19,405	£173,899
33kV UG Cable (Non Pressurised)	£26,340	£2	£605	£2,572	£29,519
33kV UG Cable (Oil)	£108	£2	£4,898	£3	£5,011
33kV UG Cable (Gas)	£264	£2	£45	£26	£337
66kV UG Cable (Non Pressurised)	£53,291	£2	£605	£5,144	£59,042
66kV UG Cable (Oil)	£116	£2	£4,898	£5	£5,021
66kV UG Cable (Gas)	£432	£2	£45	£51	£530
132kV UG Cable (Non Pressurised)	£90,934	£2	£905	£10,287	£102,128
132kV UG Cable (Oil)	£129	£2	£6,167	£10	£6,308
132kV UG Cable (Gas)	£667	£2	£67	£103	£839
EHV Sub Cable	£237,500	£2	£3,000	£2,572	£243,074
132kV Sub Cable	£400,000	£2	£3,000	£10,287	£413,289
LV Circuit Breaker	£3,388	£8,050	£0	£12,354	£23,792
LV Pillar (ID)	£4,719	£8,050	£0	£9,186	£21,955
LV Pillar (OD at Substation)	£5,136	£8,050	£0	£9,186	£22,372
LV UGB & LV Pillars (OD not at Substation)	£2,854	£8,504	£71	£9,186	£20,615
LV Board (WM)	£6,520	£8,050	£0	£9,186	£23,756
LV Board (X-type Network) (WM)	£7,694	£8,050	£0	£9,186	£24,930
6.6/11kV CB (GM) Primary	£6,315	£20,771	£1,141	£9,672	£37,899
. , ,	20,010		~,	20,012	20.,000

Asset Register Category	Financial	Safety	Environmental	Network Performance	Total
6.6/11kV CB (GM) Secondary	£5,792	£4,262	£1,108	£9,672	£20,834
6.6/11kV Switch (GM)	£4,384	£4,262	£1,108	£9,672	£19,426
6.6/11kV RMU	£8,190	£4,262	£1,108	£9,672	£23,232
6.6/11kV X-type RMU	£11,083	£4,262	£1,108	£9,672	£26,125
20kV CB (GM) Primary	£7,911	£20,771	£1,141	£9,672	£39,495
20kV CB (GM) Secondary	£6,005	£4,262	£1,108	£9,672	£21,047
20kV Switch (GM)	£5,081	£4,262	£1,108	£9,672	£20,123
20kV RMU	£8,343	£4,262	£1,108	£9,672	£23,385
33kV CB (Air Insulated Busbars)(ID) (GM)	£12,081	£20,771	£2,589	£24,248	£59,689
33kV CB (Air Insulated Busbars)(OD) (GM)	£14,874	£20,771	£2,589	£12,274	£50,508
33kV CB (Gas Insulated Busbars)(ID) (GM)	£18,299	£20,771	£2,589	£24,248	£65,907
33kV CB (Gas Insulated Busbars)(OD) (GM)	£18,299	£20,771	£2,589	£12,274	£53,933
33kV Switch (GM)	£8,537	£20,771	£2,589	£12,274	£44,171
33kV RMU	£21,099	£20,771	£2,589	£12,274	£56,733
66kV CB (Air Insulated Busbars)(ID) (GM)	£24,081	£20,771	£2,589	£24,248	£71,689
66kV CB (Air Insulated Busbars)(OD) (GM)	£38,500	£20,771	£2,589	£12,274	£74,134
66kV CB (Gas Insulated Busbars)(ID) (GM)	£43,431	£20,771	£2,589	£24,248	£91,039
66kV CB (Gas Insulated Busbars)(OD) (GM)	£43,431	£20,771	£2,589	£12,274	£79,065
132kV CB (Air Insulated Busbars)(ID) (GM)	£67,501	£31,968	£7,102	£128,126	£234,697
132kV CB (Air Insulated Busbars)(OD) (GM)	£31,781	£31,968	£7,102	£32,331	£103,182
132kV CB (Gas Insulated Busbars)(ID) (GM)	£140,585	£31,968	£7,102	£128,126	£307,781
132kV CB (Gas Insulated Busbars)(OD) (GM)	£140,585	£31,968	£7,102	£32,331	£211,986
6.6/11kV Transformer (GM)	£7,739	£4,262	£3,171	£4,836	£20,008
20kV Transformer (GM)	£8,811	£4,262	£3,171	£4,836	£21,080
33kV Transformer (GM)	£73,000	£20,771	£14,190	£48,197	£156,158
66kV Transformer	£112,203	£20,771	£14,190	£48,197	£195,361
132kV Transformer	£218,932	£31,968	£29,212	£255,853	£535,965

7.3 Financial Consequences

7.3.1 Overview

The Financial Consequences of Failure is the cost of repair or replacement to return an asset to its pre-fault state. In the context of the Methodology, it is derived using an Asset Category Reference Financial Cost of Failure, which is then modified based on asset specific data.

The overall process for deriving the Financial Consequences of Failure is shown in Figure 23.

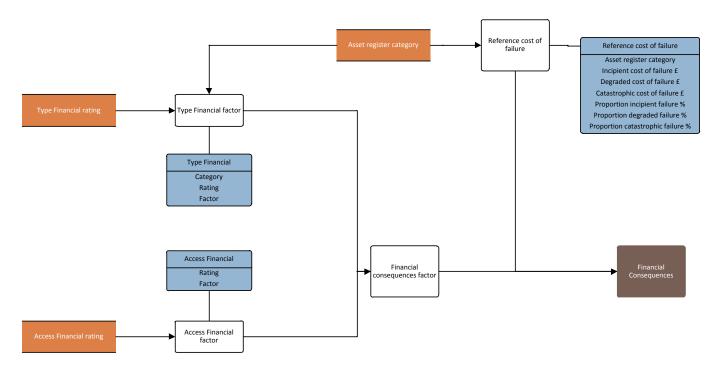


FIGURE 23: FINANCIAL CONSEQUENCES OF FAILURE

7.3.2 Reference Financial Cost of Failure

The Reference Financial Cost of Failure is based on an assessment of the typical replacement and repair costs incurred by a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. This assessment considers the cost of a repair in each case, and the relative proportions of failures that are associated with each failure mode, to derive a weighted average financial cost.

Reference Financial Cost of Failure $\,=\,$

(Proportion of Failures that are Incipient Failure × Likely Cost of Incipient Failure)

- + (Proportion of Failures that are Degraded Failures imes Likely Cost of Degraded Failure)
- + (Proportion of Failures that are Catastrophic Failures imes Likely Cost of Catastrophic Failure

(Eq. 25)

The financial consequences framework has been built with reference to historic reported costs for repairs and replacement such that the values used represent the actual typical costs incurred by a DNO in returning a faulted asset to pre-fault serviceability.

Further detail, including the relative proportions of failures by failure type (incipient, degraded and catastrophic), used in the derivation of the Reference Financial Cost of Failure can be found in Table 208 in Appendix D. The Reference Financial Cost of Failure shown in this table,

for the relevant Asset Category, shall be used to calculate the Financial Consequences of Failure, for each asset.

7.3.3 Financial Consequences Factor

The Reference Financial Cost of Failure can then be modified for individual assets within that type based on the application of a Type Financial Factor and/or an Access Financial Factor. This results in a Financial Consequences Factor that reflects the consequence characteristics of an individual asset of that type which may materially affect the cost of returning the asset to its pre-fault state, in comparison to what would be considered typical for the Asset Category.

Financial Consequences of Failure

= Reference Financial Cost of Failure × Financial Consequences Factor

(Eq. 26)

Where:

Financial Consequences Factor = Type Financial Factor \times Access Financial Factor

(Eq. 27)

7.3.3.1 TYPE FINANCIAL FACTOR

This Factor allows for an adjustment to be made based on considerations specific to an asset or group of assets at a sub-level of the Asset Register Category. This will typically be applied to reflect industry experience with operating specific subcategories of asset where repair and replacement costs vary from the reference cost. Lookup tables containing the criteria and values for the Type Financial Factor can be found in Table 209 in Appendix D.

7.3.3.2 ACCESS FINANCIAL FACTOR

This Factor allows for an adjustment to be made based on a consideration of access to the faulted asset, insofar as issues of access will have a direct and material influence on the scale of Financial Consequences, e.g. access to constrained sites/confined spaces. Lookup tables containing the criteria and values for the Access Financial Factor can be found in Tables 204 and 205 in Appendix D.

7.4 Safety Consequences

7.4.1 Overview

The Safety Consequences have been derived with reference to appropriate safety regulations and guidance. The guidance for the components comprising safety consequences comes from the Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002 [Ref. 4] and associated guidance from the Health and Safety Executive (HSE) [Ref. 5].

The overall process for deriving the Safety Consequence of Failure is shown in Figure 24.

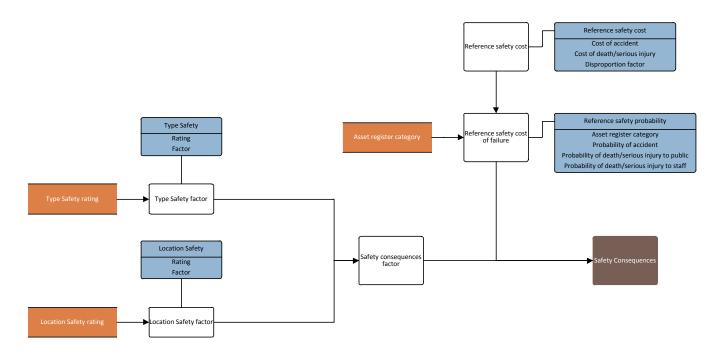


FIGURE 24: SAFETY CONSEQUENCES OF FAILURE

7.4.2 Reference Safety Cost of Failure

The Reference Safety Cost of Failure is derived initially by applying the probability that a failure could result in an accident, serious injury or fatality to the cost of a Lost Time Accident (LTA) or Death or Serious Injury (DSI) as appropriate.

```
Reference Safety Cost of Failure = ((Probability of LTA \times Cost of LTA) + ((Probability of DSI to the Public + Probability of DSI to the Staff)) \times (Cost of DSI)) \times Disproportion Factor
```

Where:

- Cost of LTA is the Reference Cost of a Lost Time Accident as shown in Table 213 in Appendix D
- Cost of DSI is the Reference Cost of a Death or Serious Injury as shown in Table 213 in Appendix D
- Disproportion Factor is explained later in this section

Each Asset Category has an associated reference safety probability based on applying the appropriate value (of preventing a LTA or DSI) to the corresponding probability that each of these events occurs, categorised as follows:-

- i) LTA;
- ii) DSI to member of staff; and
- iii) DSI to member of the public.

These values have been derived from an assessment of both disruptive and non-disruptive failure probabilities for these events based on bottom up assessments of faults. These have been evaluated for each Asset Category and are:-

i) probability that event could be hazardous;

(Eq. 28)

- ii) probability that person who is present suffers the effect; and
- iii) probability that affected person is present when fault occurs.

The Reference Safety Cost of Failure uses costs for 'death or serious injury' and 'accident' that are based on the HSE's GB cross-industry wide appraisal values for fatal injuries and for non-fatal injuries [Ref. 6]. These represent a quantification of the societal value of preventing a fatality or lost time accident. The same valuation of costs for 'death or serious injury' and 'accident' have been used in the derivation of the Reference Safety Cost of Failure for all Asset Categories.

In addition, a Disproportion Factor recognising the high risk nature of the electricity distribution industry is applied. Such factors are described by the HSE guidance when identifying reasonably practicable costs of mitigation [Ref. 7]. This value is not mandated by the HSE but they state that they believe that "the greater the risk, the more should be spent in reducing it, and the greater the bias should be on the side of safety". They also suggest that the extent of the bias must be argued in the light of all the circumstances and that the factor is unlikely to be higher than 10. In the Methodology, the factor is set to 6.25, which serves to cap the current value of preventing a fatality at £10m.

This work aligns to risk analysis carried out within the HSE's "Tolerability of Risk" (ToR) framework.

Further detail including the probabilities of Lost Time Accidents and Death or Serious Injury and the values for Reference Safety Cost can be found in Appendix D. The cost of an LTA and the cost of a DSI are common for all asset types.

7.4.3 Safety Consequences Factor

The Methodology includes the ability to vary the Safety Consequences of Failure for an individual asset around the Reference Safety Cost of Failure for its type, based on a consideration of two additional factors; the Type Safety Factor and the Location Safety Factor. These are designed to capture the specific circumstances of individual assets insofar as they are likely to have a material impact on the safety consequences of any failure of the asset and are applied as a combined Safety Consequences Factor to the Reference Safety Cost of Failure. This is shown in Eq. 29.

Safety Consequences of Failure = Reference Safety Cost of Failure × Safety Consequences Factor

(Eq. 29)

Where:

 The Safety Consequences Factor shall be derived using a lookup value from the location/type matrix shown in Table 16, applying the criteria shown in Section D.2 of Appendix D.

TABLE 16: SAFETY CONSEQUENCES FACTOR

Safety Cons	equences		TYPE	
Fact	•	Low	Medium (Default)	High
	Low	0.7	0.9	1.2
LOCATION	Medium (Default)	0.9	1	1.4
	High	1.2	1.4	1.6

The requirement to undertake assessments of this type is stated in the ESQCR and the guidance below is adapted from the guidance associated with the regulations.

7.4.3.1 TYPE SAFETY FACTOR

This addresses the principal characteristics of the equipment and its particular siting and reflects the "Nature and situation of equipment" category within the ESQCR risk assessment. Generally, equipment comprising exposed conductors will be higher risk in view of the consequences of persons coming into contact with that equipment. Plant which is fully insulated or metal enclosed will generally be lower risk. Equipment or plant which is likely to be attractive to vandals or thieves (e.g. terminal Towers) will generally be higher risk than plant which is less attractive to such persons (e.g. single wood poles).

Another characteristic considered for switchgear is the interruption medium and arc flash protection as oil filled switchgear failures can be explosive.

7.4.3.2 LOCATION SAFETY FACTOR

This is taken from the "Nature and situation of surrounding land" test in the ESQCR risk assessment. Here duty holders are required to take a view of the risk of danger from interference with the equipment - whether wilful or accidental - in consideration of the environment in which the equipment is placed.

There are two aspects to this test: firstly the geography of the land and its features (for example forests, rivers, flat fields, motorway, city streets) and secondly the use of the land (for example agricultural machinery, recreational areas, schools, housing estate).

For example electrical equipment in housing estates or in close proximity to unsupervised recreational playing fields will generally be at higher risk of danger from interference than equipment situated on sparsely populated land or contained within occupied premises.

7.5 Environmental Consequences

The Environmental Consequences have been derived with reference to appropriate environmental regulations and stakeholders.

The overall process for deriving the Environmental Consequences of Failure is shown in Figure 25.

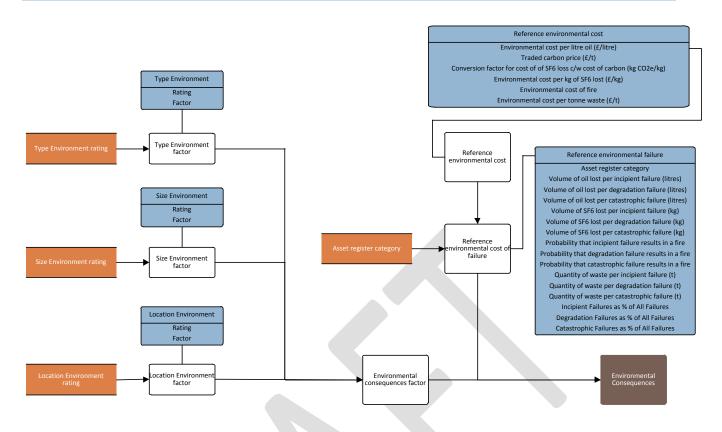


FIGURE 25: ENVIRONMENTAL CONSEQUENCES OF FAILURE

7.5.1 Reference Environmental Cost of Failure

The Environmental Consequences of Failure value for an asset is derived using a Reference Environmental Cost of Failure, which is modified for individual assets using asset specific factors. This is based on an assessment of the typical environmental impacts of a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. The Reference Environmental Cost of Failure that shall be used for each Asset Category is shown in Table 221 in Appendix D.

This assessment considers four factors:

- i) Volume of oil lost;
- ii) Volume of SF₆ lost;
- iii) Probability of failure leading to a fire; and
- iv) Quantity of waste produced.

```
Reference Environmental Cost of Failure = (\% \ of \ Incipient \ Failures) \times ((Volume \ of \ oil \ lost \ per \ Incipient \ failure \times \\ Environmental \ cost \ per \ litre \ oil \ (\pounds/litre)) + (Volume \ of \ SF_6 \ lost \ per \ Incipient \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Incipient \ failure \times Environmental \ cost \ of \ fire) + \\ (Quantity \ of \ waste \ produced \ per \ incipient \ failure \times Environmental \ cost \ per \ tonne \ waste \ (\pounds/t))) + \\ (\% \ of \ Degraded \ Failures) \times ((Volume \ of \ oil \ lost \ per \ Degraded \ failure \times \\ Environmental \ cost \ per \ litre \ oil \ (\pounds/litre)) + (Volume \ of \ SF_6 \ lost \ per \ Degraded \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (\Psi \ of \ Catastrophic \ Failures) \times ((Volume \ of \ oil \ lost \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ litre \ oil \ (\pounds/litre)) + (Volume \ of \ SF_6 \ lost \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ tonne \ waste \ (\pounds/t))))
```

Where:

- Environmental cost per litre oil = £36.08/litre
- Environmental cost per kg of SF₆ lost = £240/kg
 Which is derived from:
 - Traded carbon price = £10.04/tonne
 - o Cost of SF₆ loss c/w cost of carbon = $23,900 \text{kg}(\text{CO}_2)/\text{kg}$
- Environmental cost of fire = £5,000
- Environmental cost per tonne waste = £150/tonne

The source for the above costs are shown in Table 220.

7.5.2 Environmental Consequences Factors

The Methodology includes the ability to vary the Environmental Consequences value for an individual asset around the Reference Environmental Cost of Failure for its type, based on a consideration of three additional factors; the Type Environmental Factor, the Size Environmental Factor and the Location Environmental Factor. These are designed to capture the specific circumstances of individual assets insofar as they are likely to have a material impact on the Environmental Consequences of any failure of the asset and are applied as a combined Environmental Consequences Factor on the Reference Environmental Cost of Failure.

```
Environmental Consequences of Failure =
Reference Environmental Cost of Failure × Environmental Consequences Factor (Eq. 31)
```

Where:

Environmental Consequences Factor

= Type Environmental Factor × Size Environmental Factor

(Eq. 32)

7.5.2.1 TYPE ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on considerations specific to an asset or group of assets at a sub-level of the Asset Register Category. As the Reference Environmental Cost of Failure is built up using the impact from oil & SF₆ the Type Environmental Factor is used to temper the effects for each switchgear type. The modifier values for the Type Environmental Factor can be found in Table 222 in Appendix D.

7.5.2.2 SIZE ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on a consideration of the size of the asset in question, insofar as the size has a direct and material influence on the scale of Environmental Consequences, e.g. a larger than average Transformer holding a greater quantity of oil than that assumed in the reference case for that asset type. The modifier values for the Size Environmental Factor can be found in Table 223 in Appendix D.

7.5.2.3 LOCATION ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on an assessment of the environmental sensitivity of the site on which an asset is located. The specific concerns will vary by asset type but include proximity to watercourses and other environmentally sensitive areas. The Factor also recognises any mitigation associated with the asset. The modifier values for the Location Environmental Factor can be found in Table 224 in Appendix D. This Factor is derived by combining separate Factors relating to proximity to a watercourse (Proximity Factor) and the presence of a bund (Bunding Factor) as shown in Eq. 33.

Location Environment Factor = **Proximity Factor** \times **Bunding Factor**

(Eq. 33)

7.6 Network Performance Consequences

7.6.1 Overview

The Network Performance Consequences of Failure for an asset are derived from one of two approaches, depending on the voltage of the asset considered. For all assets operating at 20kV and below, the LV & HV Asset Consequences process is followed. For all assets operating above 20kV, the EHV & 132kV Asset Consequences process is followed.

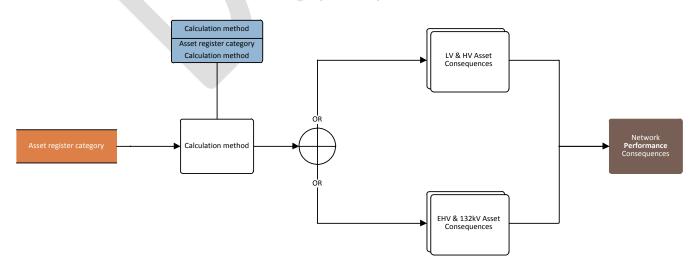


FIGURE 26: NETWORK PERFORMANCE CONSEQUENCES OF FAILURE

Page 82

7.6.2 Network Performance Consequences (LV & HV)

For LV and HV assets, a Reference Network Performance Cost of Failure appropriate to the Asset Category is initially applied. The resulting value can then be modified for individual assets in two ways:-

- i) Directly, based on the ratio of customers connected to an individual asset to the equivalent figure used in the average value; and/or
- ii) via the application of a Customer Sensitivity Factor to reflect particular customer characteristics (if appropriate).

Applying these Factors results in an LV or HV Asset Consequence value that reflects the network consequence characteristics of an individual asset of that type.

The overall process for deriving the Network Performance Consequences of Failure is shown in Figure 27.

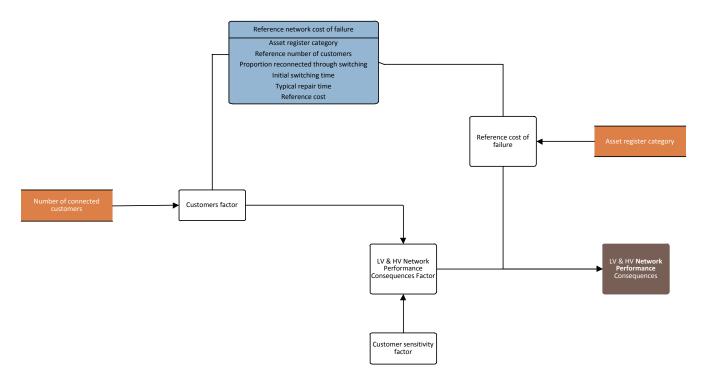


FIGURE 27: NETWORK PERFORMANCE ASSET CONSEQUENCES OF FAILURE (LV & HV)

7.6.2.1 REFERENCE NETWORK PERFORMANCE COST OF FAILURE (LV & HV) The Reference Network Performance Cost of Failure is based on an assessment of the typical network costs incurred by a failure of the asset in each of its three failure modes as measured through its impact in relation to the number of customers interrupted and the duration of those interruptions. For regulatory purposes, this is captured via the IIS mechanism.

An assessment is made of the typical numbers of customers interrupted by a fault for each failure mode, and the typical time to restore all supplies. Each fault is broken into two time periods to reflect the initial fault impact and response activity and the subsequent time to fully restore supplies and restore the asset to its pre-fault state, as illustrated in Figure 28.

FIGURE 28: NETWORK PERFORMANCE - LV & HV

These are multiplied by the relevant cost of a customer interruption (Cost of CI) and cost of a customer minute lost (Cost of CML) to produce a cost per failure per failure mode. These are then weighted using the relative probabilities of each failure mode to produce a single Reference Network Performance Cost of Failure by asset type.

Reference Network Performance Cost of Failure =
(Cost of CML × 60 × Reference Number of CC × Switching Time)
+ (Cost of CML × 60 × Reference Number of CC × Restoration Time
× % of CC off supply after switching)
+ (Cost of CI × Reference Number of CC)

Where:

- CC = Connected Customers
- Switching Time and Restoration Time are durations (in hours)

The values for the Reference Network Performance Cost of Failure (LV & HV) by Asset Category can be found in Table 226 in Appendix D.

7.6.2.2 NETWORK PERFORMANCE FACTORS (LV & HV)

The Reference Network Performance Cost of Failure can then be modified on an asset by asset basis as shown in Eq. 35.

Network Performance Cost of Failure = Reference Network Performance Cost of Failure > Network Performance Consequence Factor

(Eq. 35)

Where:

Network Performance Consequence Factor
= Customer Factor × Customer Sensitivity Factor

(Eq. 36)

Customer Factor

This Factor allows for the Reference Network Performance Cost of Failure to be varied for an individual asset to reflect the number of customers impacted by failure of that asset, relative to the reference number of customers used in the derivation of the Reference Network Performance Cost of Failure.

This is applied as a direct Factor, i.e. not via a lookup table. For example, if the number of customers used in the derivation of the Reference Network Performance Cost of Failure is 100, but for a specific example it is 80 (or 120), then a modifying factor of 0.8 (or 1.2) would be applied.

$$Customer\ Factor = \frac{No.\ of\ Customers}{Reference\ No.\ of\ Customers}$$

(Eq. 37)

Where a DNO identifies that the customers fed by an individual asset have an exceptionally high demand per customer, then the No. of Customers used in the derivation of Eq. 37 may be derived by applying an adjustment to the actual number of customers fed by the asset as shown in Table 17. DNOs can elect whether or not to apply this adjustment within their implementation of the Methodology.

TABLE 17: CUSTOMER NUMBER ADJUSTMENT FOR LV & HV ASSETS WITH HIGH DEMAND CUSTOMERS

Maximum Demand on Asset / Total Number of Customers fed by the Asset (kVA per Customer)	No. of Customers to be used in the derivation of Customer Factor		
< 50	1 x actual number of customers fed by the asset		
≥ 50 and < 100	25 x actual number of customers fed by the asset		
≥ 100 and < 500	100 x actual number of customers fed by the asset		
≥ 500 and < 1000	250 x actual number of customers fed by the asset		
≥ 1000 and < 2000	500 x actual number of customers fed by the asset		
≥ 2000	1000 x actual number of customers fed by the asset		

The default value for the Customer Factor is 1.

Customer Sensitivity Factor

The Customer Sensitivity Factor is used to reflect circumstances where the customer impact is increased due to customer reliance on electricity (e.g. vulnerable customers). DNOs may use this factor at their discretion in order to modify the Network Performance Consequence Factor.

The default value for the Customer Sensitivity Factor is 1. Individual DNOs shall be provided with the freedom within the Methodology to apply a Customer Sensitivity Factor, other than the default, to the Network Performance Consequences (LV & HV) for any asset, provided that:-

- the individual DNO documents all instances where a Customer Sensitivity Factor different from the default is applied, within their individual Network Asset Indices Methodology; and
- ii) The Customer Sensitivity Factor shall be not less than 1, nor greater than 2.

7.6.3 Network Performance Consequences (EHV & 132kV)

Similarly for EHV and 132kV assets, a Reference Network Performance Cost of Failure is used, which is varied to reflect the Network Performance Consequences associated with individual assets by the use of asset specific Factors.

This time the methodology is designed to reflect the fact that redundancy is usually designed into networks at these voltages due to the size of demand group they supply.

A significant proportion of these networks are constructed so that the supply to customers is secure for a single outage of any circuit within the network. For the purposes of the Methodology a network shall be considered secure if, in the event of a first circuit outage, there is either no interruption of supply to customers or supply is restored immediately through automatic switching as defined in ENA Engineering Recommendation P2/6 ('Security of Supply').

Once a first circuit outage has occurred within a secure network, there may be parts of the network that would experience a loss of supply if a further circuit outage were to occur. The load that could be expected to be impacted (i.e. would experience a loss of supply) during such a further circuit outage is referred to as Load at Risk.

Within EHV and 132kV networks, there may also be some parts of the network where the supply to customers is not secure for a first circuit outage event. In such cases, a first circuit outage will directly impact any connected customers and restoration is achieved via switching in line with the timescales specified in Engineering Recommendation P2/6 for that demand group.

The methodology for determining Network Performance Consequences for EHV and 132kV assets enables both these types of network to be recognised.

The overall process for deriving the Network Performance Cost of Failure is shown in Figure 29.

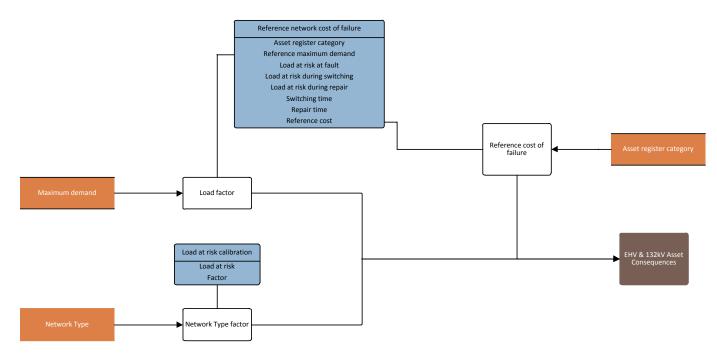


FIGURE 29: NETWORK PERFORMANCE CONSEQUENCES OF FAILURE (EHV & 132KV)

7.6.3.1 REFERENCE NETWORK PERFORMANCE COST OF FAILURE (EHV & 132KV)

The Reference Network Performance Cost of Failure is based on an assessment of the amount of Load at Risk during three stages of failure, and the typical duration of each stage:

- i) During fault (T1): this is the time period between initial circuit protection trip operation and automatic switching to reconfigure the network;
- ii) During initial switching (T2): this is the time period during which further manual network switching is undertaken to reconfigure the network to minimise the risk associated with a further circuit outage; and
- iii) During repair time (T3).

These three stages are illustrated in Figure 30.

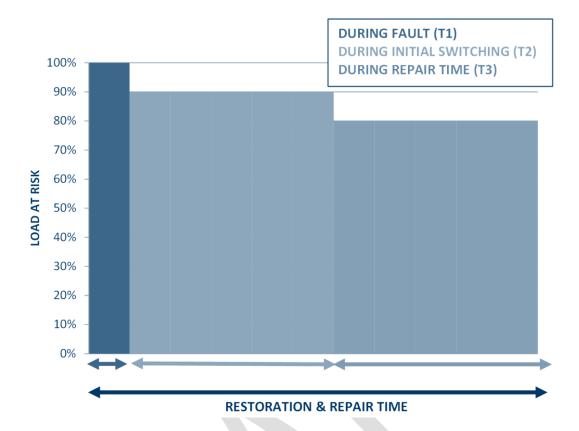


FIGURE 30: REFERENCE NETWORK PERFORMANCE COST OF FAILURE (EHV & 132KV)

This load at risk figure is then multiplied by the relevant Value of Lost Load (VoLL) figure to derive a typical Reference Network Performance Cost of Failure for these assets, taking account of the probability of a further circuit outage.

The value of VoLL used is consistent with the values for Cost of CI and Cost of CML used in the evaluation of the Reference Network Performance Cost of Failure for LV and HV assets. Therefore the evaluation of the Reference Network Performance Cost of Failure for EHV and 132kV assets is consistent with the evaluation of the impact in distribution assets (see Appendix D.4.2).

7.6.3.2 NETWORK PERFORMANCE FACTORS (EHV & 132KV)

The Reference Network Performance Consequences of Failure can then be modified on an asset by asset basis as shown in Eq. 39.

Network Performance Consequences of Failure $\,=\,$ Reference Network Performance Cost of Failure $\, imes\,$ Load Factor $\, imes\,$ Network Type Factor

(Eq. 39)

Load Factor

This Factor allows for the Reference Network Performance Cost of Failure to be varied for an individual asset to reflect the actual load supplied by that asset, relative to the value of maximum demand used to create the reference value.

The Load Factor is determined as shown in Eq. 40 (i.e. not via a lookup table).

Load Factor =

Actual Load Supplied By Asset

(Eq. 40)

Maximum Demand Used To Derive Reference Network Performance Cost of Failure

For example, if the Reference Network Performance Cost of Failure has been derived using a maximum demand of 12MVA, but for a specific asset the actual load supplied was 6MVA, then a Load Factor of 0.5 would be applied.

The values of maximum demand used in derivation of the Reference Network Performance Cost of Failure, for each Asset Category, can be found in Table 227 in Appendix D.

The default value for Load Factor is 1.

Network Type Factor

This Factor allows for the Reference Network Performance Cost of Failure to be varied to take account of the security of supply afforded by the topology of the network in which the individual asset is located.

A Network Type Factor of 2 shall be applied where an individual asset is located in a network that is not secure for a first circuit outage event that would result from failure of the asset (i.e. the network would be considered not secure if the load normally supplied by the asset would be interrupted and not restored automatically, in such an event).

A Network Type Factor of 1 shall apply to assets in secure networks.

The default value for Network Type Factor is 1.

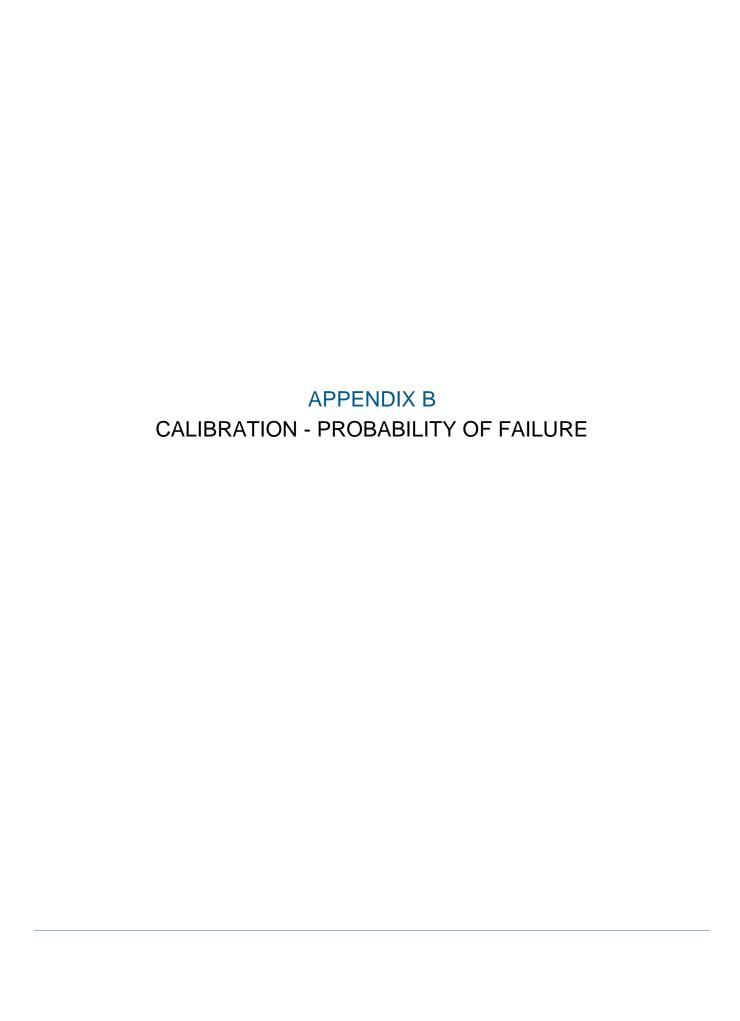
8. REFERENCES

- 1. Reliability Centred Maintenance, John Moubray, 1991, Butterworth Heinemann).
- 2. BS EN 60422:2013 "Mineral insulating oils in electrical equipment Supervision and maintenance guidance"
- 3. BS EN 60599:1999 "Mineral oil-impregnated electrical equipment in service Guide to the interpretation of dissolved and free gases analysis"
- 4. Electricity Safety, Quality and Continuity Regulations 2002, as amended in 2006 (ESQCR). http://www.legislation.gov.uk/uksi/2002/2665/contents/made
- 5. Reducing risks, protecting people HSE's decision-making process (first published in May 1999). http://www.hse.gov.uk/risk/theory/r2p2.pdf
- 6. Current HSE cost models. http://www.hse.gov.uk/statistics/cost.htm
- 7. Current guidance about what should and should not be considered in a duty holder's cost benefit analysis (CBA) for health and safety ALARP determinations. http://www.hse.gov.uk/risk/theory/alarpcheck.htm

APPENDIX A **FUNCTIONAL FAILURE DEFINITIONS**

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
LV Circuit Breaker	Measure and break unsafe levels of current (over current), make load current, and provide a point of electrical isolation.	Failing to open on a fault Failing to close reliably Failing to open during manual operation Failure to supply load current (i.e. failure during normal operating conditions) Opens Spuriously under normal conditions Opens Intermittently (Faulty)	Failure of Housing Disruptive Failure Resulting from Insulation Breakdown	Nuisance tripping or failure to operate when required due to: - damage to contacts - loose internal connections -Damage to mechanism and drive rods	Nuisance tripping or failure to operate when required due to: - Maladjusted linkage.	Failure of protection module Failure of SCADA
LV Pillar (ID)	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration.	Failing to close reliably Failing to open during manual operation Failure to supply load	Failure of Housing Disruptive Failure Resulting from Insulation	Failure of Housing requiring repair Nuisance tripping or Failure of an LV Pillar's Fuse, MCB or RCBO to	Nuisance tripping or Failure of an LV Pillar's Fuse, MCB or RCBO to operate when required due to:	Contact damage due to incorrect operation of
LV Pillar (OD)	Depending on the complexity of pillar they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	current (ie failure during normal operating conditions)	Breakdown requiring the replacement of one or all ways	operate when required due to: - deteriorated fuse carriers - breaker stuck closed	- incorrect fuse/breaker rating - breaker not latching closed	board

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
LV Board (WM)	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration. Depending on the complexity of LV Board, they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	Failing to open on a fault Failing to close reliably Failing to open during manual operation Failure to supply load current (i.e. failure during normal operating conditions) Opens Spuriously under normal conditions Opens Intermittently (Faulty)	Disruptive Failure Resulting from Insulation Breakdown	Nuisance tripping or failure to operate when required due to: - damage to contacts - moisture ingress - deteriorated fuse carriers	Nuisance tripping or failure to operate when required due to: - damage to contacts - loose internal connections - failure of protection module	Failure of housing Contact Damage due to Incorrect operation of Board
LV UGB	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration. Depending on the complexity of LV Box, they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	Failing to open on a fault (if used in this mode Failing to close reliably Failing to open during manual operation Failure to supply load current (i.e. failure during normal operating conditions) Opens Spuriously under normal conditions Opens Intermittently (Faulty)	Disruptive Failure Resulting from Insulation Breakdown	Failure to be operable when required due to: - damage to contacts - moisture ingress - deteriorated links	Failure to be operable when required due to: - damage to contacts - loose internal connections	Failure of housing Contact Damage due to Incorrect operation of Box


Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
HV Switchgear (GM)	- Carry, make or break continuous load or fault current - Maintain or interrupt voltage on all three phases Isolation & Earthing of Cables & Plant- Measurement of current and voltage	Does not open or close on command (Where this is associated with the Breaker and not the control system)Mechanical FailureElectrical Failure (Auxiliary & Control)Electrical Failure (Main Circuit)	Disruptive Failure Resulting from Insulation Breakdown	SOP preventing operation Failure to operate when required due to:- Failure of Mechanism; protection module- CT Failure- VT Failure- Failure to Trip	Failure to operate when required due to:- Low Gas Lockout or Vacuum bottle condition	Unable to withstand impulse voltage Unable to contain the insulating medium Does not allow switch tank to breath Unable to support its own weight Does not provide a connection to the substation earth mat
EHV (33 and 66kV) Switchgear (GM)	- Carry, make or break continuous load or fault current - Maintain or interrupt voltage on all three phases Isolation & Earthing of Cables & Plant - Measurement of current and voltage	Does not open or close on command (Where this is associated with the Breaker and not the control system) Mechanical Failure Electrical Failure (Auxiliary & Control) Electrical Failure (Main Circuit)	Disruptive Failure Resulting from Insulation Breakdown	SOP preventing operation Failure to operate when required due to: - Failure of Mechanism protection module - CT Failure - VT Failure - Stuck Breaker	Failure to operate when required due to: - Low Gas Lockout or Vacuum bottle condition	Unable to withstand impulse voltage Unable to contain the insulating medium Does not allow switch tank to breath Unable to support its own weight Does not provide a connection to the substation earth mat Failure of civil structures or associated disconnectors Any asset classed by RIG definition as EHV Swgr Other.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
132kV Switchgear (GM)	- Carry, make or break continuous load or fault current - Maintain or interrupt voltage on all three phases Isolation & Earthing of Cables & Plant - Measurement of current and voltage	Does not open or close on command (Where this is associated with the Breaker and not the control system)Mechanical FailureElectrical Failure (Auxiliary & Control)Electrical Failure (Main Circuit)	Disruptive Failure Resulting from Insulation Breakdown	SOP preventing operationFailure to operate when required due to:- Failure of mechanism; protection module- CT Failure- VT Failure- Stuck Breaker	Failure to operate when required due to:- Low Gas Lockout or Vacuum bottle condition	Unable to withstand impulse voltage Unable to contain the insulating medium Does not allow switch tank to breath Unable to support its own weight Does not provide a connection to the substation earth mat Failure of civil structures or associated disconnectors Any asset classed by RIG definition as 132 kV Swgr Other.
Distribution Transformers (GM)	- Step up or step down and provide a secondary output voltage which is within statutory limits Carry full load current when required Carry through fault current when required.	Tapchanger, bushing, windings, core, tank or insulation failure	Failure of the main internal components - windings, core or insulation	Failure of the bushing, cable termination, including box and conservator tank.	Failure of the Tapchanger	Oil condition corrected by an oil change and not re-conditioning, levels and leaks Cable connection to controlling switchgear Civil structure related failures

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
Grid and Primary Transformers (Primary voltage - 33 to 132kV) (GM)	- Step up or step down and provide a secondary output voltage which is within statutory limits Carry full load current when requiredCarry through fault current when required.	Tapchanger, bushing, windings, core, tank, insulation or control/monitoring failure	Failure of the tank or main internal components - windings, core or insulation	Failure of the bushing, cable termination conservator tank and associated radiator	Failure of the Tapchanger	Oil condition corrected by an oil change and not re-conditioning, levels and leaks CT's, VT's and on tank unit auxiliary transformers associated with the unit NER's and NEX's Neutral displacement VT'scable and busbar connection to controlling switchgearcivil structure related failures Buchholz
Wood pole - all voltages Note this refers to the wooden pole or small section mast only.	Support electrical equipment in compliance with the ESQCR and Construction Regulations.	Decayed Pole Decayed Struts Snapped Stays	Any structure whose components have either failed (broken) or whose residual strength has decreased to a level where immediate replacement of all or part of the structure is required.	Any structure whose components has a residual strength such that replacement is required within the timescale defined by the Company.	Vermin Damage resulting in Factor of Safety reduction requiring an intervention	Broken Conductor Broken or damaged fittings damaged or non functioning plant broken or damaged insulation Missing or degraded safety signs and anti climbing fixtures leaning poles where statutory clearances are not impacted cable boxes and platforms, including sealing ends

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
Steel Lattice Towers - all voltages	Support electrical equipment in compliance with the ESQCR.	Corrosion or distortion of the structure, i.e bent member, failing foundations	Any structure whose components have either failed (broken) or whose residual strength has decreased to a level where immediate replacement of all or part of the structure is required.	Any component of the structure who's condition is such that it prevents normal operation of the Tower, or degrades the residual strength of the Tower, requiring an intervention with in a defined period	Corrosion to minor Tower components and land movements degrading the potential of the Towers stability.	Broken Conductor Broken or damaged fittings broken or damaged insulation Missing or degraded safety signs and anti climbing fixtures cable boxes and platforms, including sealing ends
Steel Lattice Towers Conductor and fittings - all voltages	Carry load and fault current without annealing or sagging below the ESQCR limit. Maintain continuity under normal and fault conditions. Provide phase-phase and phase-earth insulation.	FlashoverInsulation failureCorroded ConductorCorroded JumperCorroded Fitting	Loss of structural integrity of any component associated with an overhead line supported on Steel Tower, excluding any associated Tower mounted plant, such that the residual strength of the component required immediate intervention.	Loss of structural integrity of any component associated with an overhead line supported on the Tower, excluding any associated Tower mounted plant, such that the residual strength of the component required intervention within a prescribed timescale.	Cracked insulator	loss of protection, loss of plant, earthing any issues relating to the support, safety notices and anti climbing guards, conductor icing which does not result in permanent damage to the conductor, cable boxes and platforms (including sealing ends)
Pressurised Cables - all voltages	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Oil or Gas leak / Top up Cable Fault Joint Failure	Cable Fault Joint Fault	Accessory or joint failure causing loss of fluid	Pressure gauges Sheath deterioration	Sheath damage and or repair Third party damages
Submarine Cables	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Cable Fault Joint Failure	Cable Fault Joint Fault	N/A	N/A	Sheath damage and or repair Third party damages

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
EHV and 132kV Non Pressurised Cables	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Cable fault or Joint failure	Cable Fault Joint Fault	N/A	N/A	Sheath damage and or repair Third party damages
Concrete Structures	Carries a piece of switchgear and is an integral part of the plant. This excludes plinths for plant which is designed with legs or other types of support for the operable parts of the plant and all power transformers	Loss of residual strength or loss of stability	Failure of the structure resulting in the plant item becoming unstable, the plant tilts or in any other way cannot be operated as a result of the condition of the concrete	Loss of section, cracking and spilling of the concrete such that the residual strength is between 80 and 100% of current condition	Loss of chemical structure and hence reduction in strength	Plinths Auxiliary structures not made of concrete Busbar supports

B.1 Normal Expected Life

TABLE 18: NORMAL EXPECTED LIFE

Asset Register Category	Sub-division	Normal Expected Life
	Concrete	60
	Steel	50
LV Poles	Wood	55
	Other (e.g. fibreglass)	80
LV Circuit Breaker		60
LV Pillar (ID)		60
LV Pillar (OD at Substation)		60
LV Pillar (OD not at a Substation)		60
LV Board (WM)		60
LV UGB		55
LV Board (X-type Network) (WM)		60
	Concrete	60
	Steel	50
6.6/11kV Poles	Wood	55
	Other (e.g. fibreglass)	80
	Concrete	60
	Steel	50
20kV Poles	Wood	55
	Other (e.g. fibreglass)	80
HV Sub Cable		100
6.6/11kV CB (GM) Primary		55
6.6/11kV CB (GM) Secondary		55
6.6/11kV Switch (GM)		55
6.6/11kV RMU		55
6.6/11kV X-type RMU		55
20kV CB (GM) Primary		55
20kV CB (GM) Secondary		55
20kV Switch (GM)		55
20kV RMU		55
6.6/11kV Transformer (GM)		60
20kV Transformer (GM)		60
	Concrete	60
22IA/ Pala	Steel	50
33kV Pole	Wood	55
	Other (e.g. fibreglass)	80
	Concrete	60
66kV Pole	Steel	50
	Wood	55

Asset Register Category	Sub-division	Normal Expected Life
	Other (e.g. fibreglass)	80
	ACSR - greased	55
	ACSR - non-greased	50
	AAAC	60
33kV OHL (Tower Line) Conductor	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	55
	Foundation - Fully Encased Concrete	95
33kV Tower	Foundation - Earth Grillage	60
	Paint System - Galvanising	30
	Paint System - Paint	20
33kV Fittings		40
ū	ACSR - greased	55
	ACSR - non-greased	50
	AAAC	60
66kV OHL (Tower Line) Conductor	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	55
	Foundation - Fully Encased Concrete	95
66kV Tower	Foundation - Earth Grillage	60
	Paint System - Galvanising	30
	Paint System - Paint	20
66kV Fittings		40
<u> </u>	Aluminium sheath - Aluminium conductor	100
	Aluminium sheath - Copper conductor	100
33kV UG Cable (Non Pressurised)	Lead sheath - Aluminium conductor	100
	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor	75
23k// LIC Cable (Oil)	Aluminium sheath - Copper conductor	75
33kV UG Cable (Oil)	Lead sheath - Aluminium conductor	80
	Lead sheath - Copper conductor	80
33kV UG Cable (Gas)	Aluminium sheath - Aluminium conductor	65
	Aluminium sheath - Copper conductor	70
	Lead sheath - Aluminium conductor	75
	Lead sheath - Copper conductor	75
	Aluminium sheath - Aluminium conductor	100
66kV UG Cable (Non Pressurised)	Aluminium sheath - Copper conductor	100
	Lead sheath - Aluminium conductor	100

Asset Register Category	Sub-division	Normal Expected Life
	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor	75
66kV UG Cable (Oil)	Aluminium sheath - Copper conductor	75
	Lead sheath - Aluminium conductor	80
	Lead sheath - Copper conductor	80
	Aluminium sheath - Aluminium conductor	65
SSEVILIC Cobio (Coo)	Aluminium sheath - Copper conductor	70
66kV UG Cable (Gas)	Lead sheath - Aluminium conductor	75
	Lead sheath - Copper conductor	75
EHV Sub Cable		100
33kV CB (Air Insulated Busbars)(ID) (GM)		60
33kV CB (Air Insulated Busbars)(OD) (GM)		50
33kV CB (Gas Insulated Busbars)(ID)(GM)		60
33kV CB (Gas Insulated Busbars)(OD)(GM)		50
33kV Switch (GM)		55
33kV RMU		55
66kV CB (Air Insulated Busbars)(ID) (GM)		50
66kV CB (Air Insulated Busbars)(OD) (GM)		55
66kV CB (Gas Insulated Busbars)(ID)(GM)		55
66kV CB (Gas Insulated Busbars)(OD)(GM)		50
	Transformer - Pre 1980	60
33kV Transformer (GM)	Transformer - Post 1980	50
, ,	Tapchanger	60
	Transformer - Pre 1980	60
66kV Transformer (GM)	Transformer - Post 1980	50
	Tapchanger	60
	ACSR - greased	55
	ACSR - non-greased	50
400L) / OLII. (Tanana Line) One denter	AAAC	60
132kV OHL (Tower Line) Conductor	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	55
	Foundation - Fully Encased Concrete	95
132kV Tower	Foundation - Earth Grillage	60
	Paint System - Galvanising	30
	Paint System - Paint	20
132kV Fittings		40
132kV UG Cable (Non Pressurised)	Aluminium sheath - Aluminium conductor	100
102KV 00 Oabic (140H I Tessuliseu)	Aluminium sheath - Copper conductor	100

Asset Register Category	Sub-division	Normal Expected Life
	Lead sheath - Aluminium conductor	100
	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor	75
132kV UG Cable (Oil)	Aluminium sheath - Copper conductor	75
	Lead sheath - Aluminium conductor	80
	Lead sheath - Copper conductor	80
	Aluminium sheath - Aluminium conductor	65
132kV UG Cable (Gas)	Aluminium sheath - Copper conductor	70
	Lead sheath - Aluminium conductor	75
	Lead sheath - Copper conductor	75
132kV Sub Cable		100
132kV CB (Air Insulated Busbars)(ID) (GM)		60
132kV CB (Air Insulated Busbars)(OD) (GM)		50
132kV CB (Gas Insulated Busbars)(ID) (GM)		60
132kV CB (Gas Insulated Busbars)(OD) (GM)		55
	Transformer - Pre 1980	60
132kV Transformer (GM)	Transformer - Post 1980	50
	Tapchanger	60

B.2 PoF Curve Parameters

TABLE 19: POF CURVE PARAMETERS

Functional Failure Category	K-Value	C-Value	Health Score Limit
Link Box	0.0077%	1.087	4
LV Circuit Breaker	0.0041%	1.087	4
LV Pillar (ID)	0.00469/	1.007	4
LV Pillar (OD)	0.0046%	1.087	4
LV Board (WM)	0.0069%	1.087	4
HV Switchgear Primary (GM)	0.0052%	1.087	4
HV Switchgear Secondary (GM)	0.0067%	1.087	4
33 & 22kV Switchgear (GM)	0.0223%	1.087	4
66kV Switchgear (GM)	0.0512%	1.087	4
132kV Switchgear (GM)	0.0431%	1.087	4
Distribution Transformers (GM)	0.0078%	1.087	4
EHV & 132kV Transformers	0.0454%	1.087	4
Wood Poles - Structure	0.0285%	1.087	4
Steel Lattice Towers - Structure	0.1182%	1.087	4
Steel Lattice Towers - Fittings	0.0096%	1.087	4
Steel Lattice Towers - Conductor	0.0080%	1.087	4
Underground Cables - Oil	3.7754%	1.087	4
Underground Cables - Gas	4.5036%	1.087	4
Submarine Cables	0.0202%	1.087	4
Non Pressurised Cable	0.0681%	1.087	4

B.3 Location Factor

B.3.1 General

TABLE 20: DISTANCE FROM COAST FACTOR LOOKUP TABLE

Distance from Coast Banding	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
≤ 1km	1.35	1.35	1	1.5	1.25	1.8	2	2
> 1km and ≤ 5km	1.1	1.1	1	1.2	1.1	1.45	1.5	1.5
> 5km and ≤ 10km	1.05	1.05	1	1.1	1.05	1.2	1.2	1.2
> 10km and ≤ 20km	1	1	1	1	1	1	1	1
>20km	0.9	0.9	1	1	1	0.85	1	1
Default	1	1	1	1	1	1	1	1

TABLE 21: ALTITUDE FACTOR LOOKUP TABLE

Altitude From Sea Level Banding	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
≤ 100m	0.9	0.9	1	1	1	0.9	0.95	0.95
> 100m and ≤ 200m	1	1	1	1	1	1	1	1
> 200m and ≤ 300m	1.05	1.05	1	1	1	1.15	1.05	1.05
> 300m	1.1	1.1	1	1	1	1.3	1.15	1.15
Default	1	1	1	1	1	1	1	1

TABLE 22: CORROSION CATEGORY FACTOR LOOKUP TABLE

TABLE III COMMODICA CAMEGORA TAGEORA TABLE								
Corrosion Category Index	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
1	0.9	0.9	1	0.9	0.9	0.75	0.95	0.95
2	0.95	0.95	1	0.95	0.95	0.9	0.95	0.95
3	1	1	1	1	1	1	1	1
4	1.1	1.1	1	1.15	1.05	1.3	1.05	1.05
5	1.25	1.25	1	1.35	1.1	1.6	1.2	1.2
Default	1	1	1	1	1	1	1	1

TABLE 23: INCREMENT CONSTANTS

Increment Constant	Switchgear	Transformers	Submarine Cables	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
INC	0.05	0.05	0.05	0	0	0	0	0	0

B.3.2 Submarine Cables

TABLE 24: SUBMARINE CABLE TOPOGRAPHY FACTOR

Topography	Score (Sea)	Score (Land locked)				
Low Detrimental Topography	1	0.9				
Medium Detrimental Topography	1.1	1				
High Detrimental Topography	1.2	1.1				
Very High Detrimental Topography	1.4	1.2				
Default	1	0.9				

TABLE 25: SUBMARINE CABLE SITUATION FACTOR

Situation	Score
Laid on bed	1
Covered	0.9
Buried	0.8
Default	1

TABLE 26: SUBMARINE CABLE WIND/WAVE FACTOR

Rating	Description	Score
1	Sheltered sea loch, Wind <200 W/m2	1
2	Wave <15kW/m, Wind 200-800 W/m2	1.2
3	Wave >15kW/m, Wind > 800 W/m2	1.4
	Default	1

TABLE 27: COMBINED WAVE & CURRENT ENERGY FACTOR

Intensity	Scoring (Sea)	Scoring (Landlocked)
Low	1.1	1
Moderate	1.25	1.15
High	1.5	1.4
Default	1.1	1

B.4 Duty Factor

TABLE 28: DUTY FACTOR LOOKUP TABLES - CABLES

Duty Factor 1 (DF1)

Maximum % Utilisation under normal operating conditions	Duty Factor
≤ 50%	0.8
> 50% and ≤ 70%	0.9
> 70% and ≤ 100%	1
> 100%	1.8
Default	1

Duty Factor 2 (DF2)

Operating Voltage / Design Voltage	Duty Factor
≤ 40%	0.7
> 40% and ≤ 55%	0.8
> 55% and ≤ 70%	0.9
> 70%	1
Default	1

TABLE 29: DUTY FACTOR LOOKUP TABLE - SWITCHGEAR

Number of operations	Duty Factor
Normal/Low	1
High (eg: Auto-reclosers)	1.2

TABLE 30: DUTY FACTOR LOOKUP TABLE - DISTRIBUTION TRANSFORMERS

Max % Utilisation under normal operating conditions	Duty Factor
≤ 50%	0.9
> 50% and ≤ 70%	0.95
> 70% and ≤ 100%	1
>100%	1.4
Default	1

TABLE 31: DUTY FACTOR LOOKUP TABLES - GRID & PRIMARY TRANSFORMERS

Transformer

Transfermer	
Max % Utilisation under normal operating conditions	Duty Factor
≤ 50%	1
> 50% and ≤ 70%	1.05
> 70% and ≤ 100%	1.1
>100%	1.4
Default	1

Tapchanger

Average Number of Daily Taps	Duty Factor
≤ 7	0.9
> 7 and ≤ 14	1
> 14 and ≤ 28	1.2
> 28	1.3
Default	1

The above transformer and Tapchanger duty factors will not be combined into a single factor, as separate Health Scores will be calculated for each element.

B.5 Observed Condition Factors

B.5.1 Overview

The following calibration tables shall be used to determine the value of each Observed Condition Input for individual assets.

The Observed Condition Inputs consist of three elements:-

- i) A Condition Input Factor, which is used in the derivation of the Observed Condition Factor:
- ii) a Condition Input Cap, which specifies a Health Score value that is used in the derivation of the Observed Condition Cap;
- iii) a Condition Input Collar, which specifies a Health Score value that is used in the derivation of the Observed Condition Collar.

The use of Observed Condition Inputs to create the Observed Condition Modifier is described in Section 6.9.

DNOs shall map their own observed condition data to the criteria shown in these calibration tables, in order to determine the appropriate values for each of the Observed Condition Inputs. Where no data is available the default values for the Observed Condition Inputs shall be applied.

B.5.2 LV UGB

TABLE 32: OBSERVED CONDITION INPUT - LV UGB: STEEL COVER & PIT CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 33: OBSERVED CONDITION INPUT - LV UGB: WATER / MOISTURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None		0.9	10	0.5
Present in Pit		1	10	0.5
Present in bell housing		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 34: OBSERVED CONDITION INPUT - LV UGB: BELL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory		0.9	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 35: OBSERVED CONDITION INPUT - LV UGB: INSULATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory		0.9	10	0.5
Some Deterioration		1	10	0.5
Substantial Deterioration		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 36: OBSERVED CONDITION INPUT - LV UGB: SIGNS OF HEATING

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		0.9	10	0.5
Minor Deterioration		1	10	0.5
Minor air losses		1.3	10	0.5
Major Air losses		1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 37: OBSERVED CONDITION INPUT - LV UGB: PHASE BARRIERS

Condition Criteria: Phase barriers Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Yes		1	10	0.5
Missing		1.3	10	0.5
Default	No data available	1	10	0.5

B.5.3 LV Circuit Breaker

TABLE 38: OBSERVED CONDITION INPUT - LV CIRCUIT BREAKER: EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.6	10	8
Default	No data available	1	10	0.5

B.5.4 LV Board (WM)

TABLE 39: OBSERVED CONDITION INPUT - LV BOARD (WM): SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 40: OBSERVED CONDITION INPUT - LV BOARD (WM): COMPOUND LEAKS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	No leakage	0.9	10	0.5
Slight leak	Slight weep	1	10	0.5
Poor	Free oil observed	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 41: OBSERVED CONDITION INPUT - LV BOARD (WM): SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

B.5.5 LV Pillars

TABLE 42: OBSERVED CONDITION INPUT - LV PILLARS: SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 43: OBSERVED CONDITION INPUT - LV PILLARS: COMPOUND LEAKS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	No leakage	0.9	10	0.5
Slight leak	Slight weep	1	10	0.5
Poor	Free oil observed	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 44: OBSERVED CONDITION INPUT - LV PILLARS: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 45: OBSERVED CONDITION INPUT - LV PILLARS: INSULATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory		0.9	10	0.5
Some Deterioration		1	10	0.5
Substantial Deterioration		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 46: OBSERVED CONDITION INPUT - LV PILLARS: SIGNS OF HEATING

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		0.9	10	0.5
Minor Deterioration		1	10	0.5
Minor Air losses		1.3	10	0.5
Major Air losses		1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 47: OBSERVED CONDITION INPUT - LV PILLARS: PHASE BARRIERS

Condition Criteria: Phase barriers Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Yes		1	10	0.5
Missing		1.3	10	0.5
Default	No data available	1	10	0.5

B.5.6 HV Switchgear (GM) - Primary

TABLE 48: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 49: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: OIL LEAKS / GAS PRESSURE

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,		
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	Oil: No leakage Gas: Pressure within acceptable range	0.9	10	0.5
Slight leak	Oil: Slight weep Gas: Not used	1	10	0.5
Poor	Oil: Free oil observed Gas: Pressure outside of acceptable range	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 50: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: THERMOGRAPHIC ASSESSMENT

	121110111111101111111111111111111111111			
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 51: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 52: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than expected		0.9	10	0.5
As expected		1	10	0.5
Deteriorated Environment		1.3	10	0.5
Severely deteriorated environment		1.5	10	0.5
Default	No data available	1	10	0.5

B.5.7 HV Switchgear (GM) - Distribution

TABLE 53: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 54: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: OIL LEAKS / GAS PRESSURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	Oil: No leakage Gas: Pressure within acceptable range	0.9	10	0.5
Slight leak	Oil: Slight weep Gas: Not used	1	10	0.5
Poor	Oil: Free oil observed Gas: Pressure outside of acceptable range	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 55: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: THERMOGRAPHIC ASSESSMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 56: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 57: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than expected		0.9	10	0.5
As expected		1	10	0.5
Deteriorated Environment		1.3	10	0.5
Severely deteriorated environment		1.5	10	0.5
Default	No data available	1	10	0.5

B.5.8 EHV Switchgear (GM)

TABLE 58: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SWITCHGEAR EXTERNAL CONDITION

TABLE OC. OBOLINE ON THE OT LITT OWN ON CHARLES ON THE ONE				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 59: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): OIL LEAKS / GAS PRESSURE

7.12.2.00.02.2.1.1.2.00.1.1.1.0.1.1.1.0.1.1.1.1				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	Oil: No leakage Gas: Pressure within acceptable range	0.9	10	0.5
Slight leak	Oil: Slight weep Gas: Not used	1	10	0.5
Poor	Oil: Free oil observed Gas: Pressure outside of acceptable range	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 60: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): THERMOGRAPHIC ASSESSMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 61: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SWITCHGEAR INTERNAL CONDITION & OPERATION

ABLE 01. OBSERVED CONDITION INFOT - ENVIOUNCE (GIM). SWITCHGEAR INTERNAL CONDITION & OFERATION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 62: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than expected		0.9	10	0.5
As expected		1	10	0.5
Deteriorated Environment		1.3	10	0.5
Severely deteriorated environment		1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 63: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SUPPORT STRUCTURES

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		0.9	10	0.5
Normal wear	Concrete Structures: Surface Deterioration Steel Structures: Minor localised surface corrosion	1	10	0.5
Some deterioration	Concrete Structures: Minor cracks and loss of section Steel Structures: Some significant corrosion, minor loss of cross section	1.3	10	0.5
Substantial deterioration	Concrete Structures: Loss of section, reinforcing exposed Steel Structures: Major corrosion, wasting of steel cross section, laminated rusk, holes or loss of steel at edges, severe damage	1.5	10	0.5
Default	No data available	1	10	0.5

B.5.9 132kV Switchgear (GM)

TABLE 64: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 65: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): OIL LEAKS / GAS PRESSURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	Oil: No leakage Gas: Pressure within acceptable range	0.9	10	0.5
Slight leak	Oil: Slight weep Gas: Not used	1	10	0.5
Poor	Oil: Free oil observed Gas: Pressure outside of acceptable range	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 66: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): THERMOGRAPHIC ASSESSMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 67: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 68: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than expected		0.9	10	0.5
As expected		1	10	0.5
Deteriorated Environment		1.3	10	0.5
Severely deteriorated environment		1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 69: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SUPPORT STRUCTURES

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		0.9	10	0.5
Normal wear	Concrete Structures: Surface Deterioration Steel Structures: Minor localised surface corrosion	1	10	0.5
Some deterioration	Concrete Structures: Minor cracks and loss of section Steel Structures: Some significant corrosion, minor loss of cross section	1.3	10	0.5
Substantial deterioration	Concrete Structures: Loss of section, reinforcing exposed Steel Structures: Major corrosion, wasting of steel cross section, laminated rusk, holes or loss of steel at edges, severe damage	1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 70: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): AIR SYSTEMS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		0.9	10	0.5
Minor deterioration		1	10	0.5
Minor air losses		1.3	10	0.5
Major air losses		1.5	10	0.5
Default	No data available	1	10	0.5

B.5.10 HV Transformer (GM)

TABLE 71: OBSERVED CONDITION INPUT - HV TRANSFORMER (GM): TRANSFORMER EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	Condition as new	0.9	10	0.5
Good	e.g. no evidence of corrosion or oil leakage	1	10	0.5
Slight Deterioration	e.g. minor localised surface corrosion, no evidence of oil leakage or slight (but repairable) oil leakage	1.1	10	0.5
Poor	e.g. some significant corrosion, or evidence of slight oil (unrepairable) leakage	1.25	10	0.5
Very Poor	e.g. major corrosion or evidence of significant oil leakage	1.4	10	8
Default	No data available	1	10	0.5

B.5.11 EHV Transformer (GM) (Main Transformer component)

TABLE 72: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): MAIN TANK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 73: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): COOLERS / RADIATOR CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 74: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): BUSHINGS CONDITION

Condition Criteria: Observed	Description	Condition Input	Condition	Condition
Condition	2000p.11011	Factor	Input Cap	Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 75: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): KIOSK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 76: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.2	10	0.5
Default	No data available	1	10	0.5

B.5.12 EHV Transformer (GM) (Tapchanger component)

TABLE 77: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): TAPCHANGER EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 78: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): INTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 79: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): DRIVE MECHANISM CONDITION

TABLE 10. OBOLINOLOUS IN OT LITT TRANSFORMER (CIN). DRIVE INCOTTANION CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 80: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTOR CONTACTS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.95	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 81: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTOR BRAIDS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.95	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.05	10	0.5
Substantial Deterioration		1.1	10	0.5
Default	No data available	1	10	0.5

B.5.13 132kV Transformer (GM) (Main Transformer component)

TABLE 82: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): MAIN TANK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 83: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): COOLERS / RADIATOR CONDITION

Condition Criteria: Observed	Description	Condition Input	Condition	Condition
Condition	Description	Factor	Input Cap	Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 84: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): BUSHINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 85: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): KIOSK CONDITION

I ADEL 03. ODOL	TABLE 03. OBOLINED CONDITION IN 01 - 132KV TRANSI CRIMER (CIII). RICOR CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Normal Wear		1	10	0.5	
Some Deterioration		1.1	10	0.5	
Substantial Deterioration		1.2	10	0.5	
Default	No data available	1	10	0.5	

TABLE 86: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.2	10	0.5
Default	No data available	1	10	0.5

B.5.14 132kV Transformer (GM) (Tapchanger component)

TABLE 87: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): TAPCHANGER EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 88: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): INTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 89: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): DRIVE MECHANISM CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.9	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.2	10	0.5
Substantial Deterioration		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 90: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTOR CONTACTS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.95	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.1	10	0.5
Substantial Deterioration		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 91: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTOR BRAIDS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		0.95	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.05	10	0.5
Substantial Deterioration		1.1	10	0.5
Default	No data available	1	10	0.5

B.5.15 Submarine Cable

TABLE 92: OBSERVED CONDITION INPUT - SUBMARINE CABLE: EXTERNAL CONDITION ARMOUR

Condition Criteria	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good		1	10	0.5
Poor		1.6	10	6
Critical		1.8	10	8
Default	No data available	1	10	0.5

B.5.16 LV Poles

TABLE 93: OBSERVED CONDITION INPUT - LV POLE: VISUAL POLE CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.8	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.6	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 94: OBSERVED CONDITION INPUT - LV POLE: POLE TOP ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 95: OBSERVED CONDITION INPUT - LV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 96: OBSERVED CONDITION INPUT - LV POLE: BIRD / ANIMAL DAMAGE

TABLE 30: OBOLINAL CONDITION IN OT - LY TOLL: BIND / ANIMAL DAMAGE					
Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No		1	10	0.5	
Yes		1.4	10	0.5	
Default	No data available	1	10	0.5	

B.5.17 HV Poles

TABLE 97: OBSERVED CONDITION INPUT - HV POLE: VISUAL POLE CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.8	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.6	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 98: OBSERVED CONDITION INPUT - HV POLE: VISUAL POLE CONDITION: POLE TOP ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 99: OBSERVED CONDITION INPUT - HV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 100: OBSERVED CONDITION INPUT - HV POLE: BIRD / ANIMAL DAMAGE

Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

B.5.18 EHV Poles

TABLE 101: OBSERVED CONDITION INPUT - EHV POLE: VISUAL POLE CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.8	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.6	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

TABLE 102: OBSERVED CONDITION INPUT - EHV POLE: POLE TOP ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 103: OBSERVED CONDITION INPUT - EHV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 104: OBSERVED CONDITION INPUT - EHV POLE: BIRD / ANIMAL DAMAGE

Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No		1	10	0.5
Yes		1.4	10	0.5
Default	No data available	1	10	0.5

B.5.19 EHV Towers (Tower Steelwork component)

TABLE 105: OBSERVED CONDITION INPUT - EHV TOWER: TOWER LEGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 106: OBSERVED CONDITION INPUT - EHV TOWER: BRACINGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 107: OBSERVED CONDITION INPUT - EHV TOWER: CROSSARMS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		0.9	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 108: OBSERVED CONDITION INPUT - EHV TOWER: PEAK

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	0.5
Default	No data available	1	10	0.5

B.5.20 EHV Towers (Tower Paintwork component)

TABLE 109: OBSERVED CONDITION INPUT - EHV TOWER: PAINTWORK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		1	10	0.5
Slight rust breakthrough	Slight rust breakthrough - up to 5% of surface area affected.	1.1	10	0.5
Moderate rust breakthrough	Moderate rust breakthrough - between 5% and 20% of surface area affected, and/or pitted rust	1.6	7	0.5
Severe rust breakthrough	Severe rust breakthrough - more than 20% of surface area affected, AND/OR damaged or bent steelwork, AND/OR any blistered paintwork with evidence of severe rust underneath, painting/attention required urgently. Comment should be added	1.8	7	8
Default	No data available	1	10	0.5

B.5.21 EHV Towers (Tower Foundation component)

TABLE 110: OBSERVED CONDITION INPUT - EHV TOWER: FOUNDATION CONDITION

TABLE TIO. OBOLINED CONDITION IN CT. LITT TOWARD TO CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		1	6	0.5
Normal Wear		1.1	6	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

B.5.22 132kV Towers (Tower Steelwork component)

TABLE 111: OBSERVED CONDITION INPUT - 132KV TOWER: TOWER LEGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 112: OBSERVED CONDITION INPUT - 132KV TOWER: BRACINGS

	TABLE THE OBSERVED SORDINGRAM ST. TOTAL A STATE OF THE ST				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Acceptable		1	10	0.5	
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	0.5	
Default	No data available	1	10	0.5	

TABLE 113: OBSERVED CONDITION INPUT - 132KV TOWER: CROSSARMS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		0.9	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 114: OBSERVED CONDITION INPUT - 132KV TOWER: PEAK

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	10	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	0.5
Default	No data available	1	10	0.5

B.5.23 132kV Towers (Tower Paintwork component)

TABLE 115: OBSERVED CONDITION INPUT - 132KV TOWER: PAINTWORK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		1	10	0.5
Slight rust breakthrough	Slight rust breakthrough - up to 5% of surface area affected.	1.1	10	0.5
Moderate rust breakthrough	Moderate rust breakthrough - between 5% and 20% of surface area affected, and/or pitted rust	1.6	7	0.5
Severe rust breakthrough	Severe rust breakthrough - more than 20% of surface area affected, AND/OR damaged or bent steelwork, AND/OR any blistered paintwork with evidence of severe rust underneath, painting/attention required urgently. Comment should be added	1.8	7	8
Default	No data available	1	10	0.5

B.5.24 132kV Towers (Tower Foundation component)

TABLE 116: OBSERVED CONDITION INPUT - 132KV TOWER: FOUNDATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		1	6	0.5
Normal Wear		1.1	6	0.5
Some Deterioration		1.4	10	0.5
Substantial Deterioration		1.8	10	8
Default	No data available	1	10	0.5

B.5.25 EHV Fittings

TABLE 117: OBSERVED CONDITION INPUT - EHV FITTINGS: TOWER FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 118: OBSERVED CONDITION INPUT - EHV FITTINGS: CONDUCTOR FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 119: OBSERVED CONDITION INPUT - EHV FITTINGS: INSULATORS - ELECTRICAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
As new		0.9	10	0.5	
Normal Wear		1.1	10	0.5	
Some Deterioration		1.3	10	0.5	
Substantial Deterioration	e.g. several broken/missing sheds	1.4	10	8	
Default	No data available	1	10	0.5	

TABLE 120: OBSERVED CONDITION INPUT - EHV FITTINGS: INSULATORS - MECHANICAL CONDITION

Condition Criteria:	Description	Condition Input	Condition	Condition
Observed Condition	Description	Factor	Input Cap	Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

B.5.26 132kV Fittings

TABLE 121: OBSERVED CONDITION INPUT - 132KV FITTINGS: TOWER FITTINGS CONDITION

17.522 12.11 0502.11 25 001.511.1011 1111 01 102.11 1111.1100 101.1511.1011				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 122: OBSERVED CONDITION INPUT - 132KV FITTINGS: CONDUCTOR FITTINGS CONDITION

TABLE 122. OBSERVED CONDITION IN OT - 132RV TH TINGS. CONDUCTOR TH TINGS CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 123: OBSERVED CONDITION INPUT - 132KV FITTINGS: INSULATORS - ELECTRICAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration	e.g. several broken/missing sheds	1.4	10	8
Default	No data available	1	10	0.5

TABLE 124: OBSERVED CONDITION INPUT - 132KV FITTINGS: INSULATORS - MECHANICAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

B.5.27 EHV Tower Line Conductor

TABLE 125: OBSERVED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: VISUAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 126: OBSERVED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: MIDSPAN JOINTS

Condition Criteria: No. of Midspan Joints	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
0		0.9	10	0.5
1		1.05	10	0.5
2		1.1	10	0.5
>2		1.2	10	6
Default	No data available	1	10	0.5

B.5.28 132kV Tower Line Conductor

TABLE 127: OBSERVED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: VISUAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.9	10	0.5
Normal Wear		1.1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 128: OBSERVED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: MIDSPAN JOINTS

Condition Criteria: No. of Midspan Joints	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
0		0.9	10	0.5
1		1.05	10	0.5
2		1.1	10	0.5
>2		1.2	10	6
Default	No data available	1	10	0.5

B.6 Measured Condition Factors

B.6.1 Overview

The following calibration tables shall be used to determine the value of each Measured Condition Input for individual assets.

The Measured Condition Inputs consist of three elements:-

- i) A Condition Input Factor, which is used in the derivation of the Measured Condition Factor;
- ii) a Condition Input Cap, which specifies a Health Score value that is used in the derivation of the Measured Condition Cap;
- iii) a Condition Input Collar, which specifies a Health Score value that is used in the derivation of the Measured Condition Collar.

The use of Measured Condition Inputs to create the Measured Condition Modifier is described in Section 6.10.

DNOs shall map their own observed condition data to the criteria shown in these calibration tables, in order to determine the appropriate values for each of the Measured Condition Inputs. Where no data is available the default values for the Measured Condition Inputs shall be applied.

B.6.2 LV UGB

TABLE 129: MEASURED CONDITION INPUT - LV UGB: OPERATIONAL ADEQUACY

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable		1	10	0.5
Inoperable - Secure		1.1	10	0.5
Inoperable - Hazardous		1.3	10	0.5
Default	No data available	1	10	0.5

B.6.3 LV Circuit Breaker

TABLE 130: MEASURED CONDITION INPUT - LV CIRCUIT BREAKER: OPERATIONAL ADEQUACY

TABLE TOOLINE CONDITION IN CT. ET ONGOTT BREAKEN OF ENGLISHE ABEQUACE				
Condition Criteria:	Description	Condition Input	Condition	Condition
Operational Adequacy	Description	Factor	Input Cap	Input Collar
Acceptable		1	10	0.5
Unacceptable		1.6	10	8
Default	No data available	1	10	0.5

B.6.4 LV Board (WM)

TABLE 131: MEASURED CONDITION INPUT - LV BOARD (WM): OPERATIONAL ADEQUACY

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable		1	10	0.5
Inoperable - Secure		1.1	10	0.5
Inoperable - Hazardous		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 132: MEASURED CONDITION INPUT - LV BOARD (WM): SECURITY

Condition Criteria: Security	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory		1	10	0.5
Unsatisfactory		1.3	10	0.5
Default	No data available	1	10	0.5

B.6.5 LV Pillars

TABLE 133: MEASURED CONDITION INPUT - LV PILLAR: OPERATIONAL ADEQUACY

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable		1	10	0.5
Inoperable - Secure		1.1	10	0.5
Inoperable - Hazardous		1.3	10	0.5
Default	No data available	1	10	0.5

B.6.6 HV Switchgear (GM) - Primary

TABLE 134: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.1	10	0.5
High		1.3	10	8
Default	No data available	1	10	0.5

TABLE 135: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: DUCTOR TEST

Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 136: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: IR TEST

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 137: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: OIL TESTS

Condition Criteria: Oil Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 138: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: TEMPERATURE READINGS

1712-1701 ME 1001 ME 1					
Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Ambient or Below		0.9	10	0.5	
Above ambient		1	10	0.5	
Substantially above ambient		1.1	10	0.5	
Default	No data available	1	10	0.5	

TABLE 139: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.7 HV Switchgear (GM) - Distribution

TABLE 140: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.1	10	0.5
High		1.3	10	8
Default	No data available	1	10	0.5

TABLE 141: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: DUCTOR TEST

Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 142: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: OIL TESTS

Condition Criteria: Oil Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
As New		1	10	0.5	
up to 10% deterioration from new		1.1	10	0.5	
> 10% deterioration from new		1.3	10	0.5	
Default	No data available	1	10	0.5	

TABLE 143: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: TEMPERATURE READINGS

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 144: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: TRIP TEST

TABLE THE MEASURE CONTENT OF THE CON				
Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.8 EHV Switchgear (GM)

TABLE 145: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.1	10	0.5
High		1.3	10	8
Default	No data available	1	10	0.5

TABLE 146: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): DUCTOR TEST

17.522 1 10. III.2.1661(25 661(51161(111 61 211 6111161(162)11((611)) 566161(126)				
Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 147: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): IR TEST

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 148: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): OIL TESTS / GAS TESTS

Condition Criteria: Oil Test/ Gas Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 149: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 150: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.9 132V Switchgear (GM)

TABLE 151: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.1	10	0.5
High		1.3	10	8
Default	No data available	1	10	0.5

TABLE 152: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): DUCTOR TEST

TABLE 102: MEAGO	LED COMBINION IN CT 1021(1 CT	**************************************		
Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 153: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): IR TEST

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
As New		1	10	0.5	
up to 10% deterioration from new		1.1	10	0.5	
> 10% deterioration from new		1.3	10	0.5	
Default	No data available	1	10	0.5	

TABLE 154: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): OIL TESTS / GAS TESTS

Condition Criteria: Oil Test/ Gas Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New		1	10	0.5
up to 10% deterioration from new		1.1	10	0.5
> 10% deterioration from new		1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 155: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below		0.9	10	0.5
Above ambient		1	10	0.5
Substantially above ambient		1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 156: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.10 HV Transformer (GM)

TABLE 157: MEASURED CONDITION INPUT - HV TRANSFORMER (GM): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 158: MEASURED CONDITION INPUT - HV TRANSFORMER (GM): OIL ACIDITY

Condition Criteria: Oil Acidity (mg KOH/g)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
≤ 0.15		0.9	10	0.5
> 0.15 and ≤ 0.3		1	10	0.5
> 0.3 and ≤ 0.5		1.15	10	0.5
> 0.5		1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 159: MEASURED CONDITION INPUT - HV TRANSFORMER (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	6
Default	No data available	1	10	0.5

B.6.11 EHV Transformer (GM) (Main Transformer Component)

TABLE 160: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): MAIN TRANSFORMER PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 161: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): TEMPERATURE READINGS

TABLE 101: MICASONED CONDITION IN 01 - ETV TRANSI ONMER (GM). TEMI ERATORE READINGS				
Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	6
Default	No data available	1	10	0.5

B.6.12 EHV Transformer (GM) (Tapchanger component)

TABLE 162: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): TAPCHANGER PARTIAL DISCHARGE

IADEL 102. MILAGO	KED COMBINION IN CT - EITV TRANCI CRIMEN	(((((((((((((((((((JOHANGE
Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

B.6.13 132kV Transformer (GM) (Main Transformer Component)

TABLE 163: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): MAIN TRANSFORMER PARTIAL DISCHARGE

TABLE 103. WEASURED	TABLE 103. MEASURED CONDITION INFOT - 132KV TRANSFORMER (GM). MAIN TRANSFORMER FARTIAL DISCHARGE					
Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar		
Low		1	10	0.5		
Medium		1.15	10	0.5		
High		1.5	10	6		
Default	No data available	1	10	0.5		

TABLE 164: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	6
Default	No data available	1	10	0.5

B.6.14 132kV Transformer (GM) (Tapchanger component)

TABLE 165: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): TAPCHANGER PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

B.6.15 EHV Cable (Non Pressurised)

TABLE 166: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): SHEATH TEST

Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.8	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 167: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 168: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded		1	6	0.5
<0.01 per km		1.3	10	0.5
<0.1 per km		1.6	10	6
>0.1 per km		1.8	10	8
Default	No data available	1	10	0.5

B.6.16 EHV Cable (Oil)

TABLE 169: MEASURED CONDITION INPUT - EHV CABLE (OIL): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 170: MEASURED CONDITION INPUT - EHV CABLE (OIL): LEAKAGE

Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded		1	10	0.5
Low/ moderate		1.1	10	0.5
High		1.3	10	6
Very High		1.5	10	8
Default	No data available	1	10	0.5

B.6.17 EHV Cable (Gas)

TABLE 171: MEASURED CONDITION INPUT - EHV CABLE (GAS): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 172: MEASURED CONDITION INPUT - EHV CABLE (GAS): LEAKAGE

TABLE 172. MEAGURED GONDITION IN OT - EITY CABLE (CAG). LEARAGE					
Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No (or very low) historic leakage recorded		1	10	0.5	
Low/ moderate		1.1	10	0.5	
High		1.3	10	6	
Very High		1.5	10	8	
Default	No data available	1	10	0.5	

B.6.18 132kV Cable (Non Pressurised)

TABLE 173: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): SHEATH TEST

	(10111 1121 (10111 12) (11211 11) (11211 11) (11211 11) (11211 11) (11211 11) (11211 11) (11211 11)				
Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
As new		0.8	10	0.5	
Normal Wear		1	10	0.5	
Some Deterioration		1.3	10	0.5	
Substantial Deterioration		1.4	10	6	
Default	No data available	1	10	0.5	

TABLE 174: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 175: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded		1	6	0.5
<0.01 per km		1.3	10	0.5
<0.1 per km		1.6	10	6
>0.1 per km		1.8	10	8
Default	No data available	1	10	0.5

B.6.19 132kV Cable (Oil)

TABLE 176: MEASURED CONDITION INPUT - 132KV CABLE (OIL): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 177: MEASURED CONDITION INPUT - 132KV CABLE (OIL): LEAKAGE

Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded		1	10	0.5
Low/ moderate		1.1	10	0.5
High		1.3	10	6
Very High		1.5	10	8
Default	No data available	1	10	0.5

B.6.20 132kV Cable (Gas)

TABLE 178: MEASURED CONDITION INPUT - 132KV CABLE (GAS): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 179: MEASURED CONDITION INPUT - 132KV CABLE (GAS): LEAKAGE

17.522 1101 M27.601.25 CONSTITUTE INTO 1 1021.17 C7.6512 (07.6)1 227.461.62				
Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded		1	10	0.5
Low/ moderate		1.1	10	0.5
High		1.3	10	6
Very High		1.5	10	8
Default	No data available	1	10	0.5

B.6.21 Submarine Cable

TABLE 180: MEASURED CONDITION INPUT - SUBMARINE CABLE: SHEATH TEST

Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As new		0.8	10	0.5
Normal Wear		1	10	0.5
Some Deterioration		1.3	10	0.5
Substantial Deterioration		1.4	10	8
Default	No data available	1	10	0.5

TABLE 181: MEASURED CONDITION INPUT - SUBMARINE CABLE: PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	10	0.5
Medium		1.15	10	0.5
High		1.5	10	6
Default	No data available	1	10	0.5

TABLE 182: MEASURED CONDITION INPUT - SUBMARINE CABLE: FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded		1	6	0.5
<0.01 per km		1.3	10	0.5
<0.1 per km		1.6	10	6
>0.1 per km		1.8	10	8
Default	No data available	1	10	0.5

B.6.22 LV Poles

TABLE 183: MEASURED CONDITION INPUT - LV POLE: POLE DECAY / DETERIORATION

TABLE 100: MEAGURED CONDITION IN CT. EVI CLE: 1 CLE DECAT / DETERIORATION					
Condition Criteria: Degree of decay/ deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
None		0.8	6	0.5	
No significant decay/ deterioration		1	6	0.5	
High		1.4	10	6	
Very High		1.8	10	8	
Default	No data available	1	10	0.5	

B.6.23 HV Poles

TABLE 184: MEASURED CONDITION INPUT - HV POLE: POLE DECAY / DETERIORATION

Condition Criteria: Degree of decay/ deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None		0.8	6	0.5
No significant decay/ deterioration		1	6	0.5
High		1.4	10	6
Very High		1.8	10	8
Default	No data available	1	10	0.5

B.6.24 EHV Poles

TABLE 185: MEASURED CONDITION INPUT - EHV POLE: POLE DECAY / DETERIORATION

Condition Criteria: Degree of decay/ deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None		0.8	6	0.5
No significant decay/ deterioration		1	6	0.5
High		1.4	10	6
Very High		1.8	10	8
Default	No data available	1	10	0.5

B.6.25 EHV Fittings

TABLE 186: MEASURED CONDITION INPUT - EHV FITTINGS: THERMAL IMAGING

Condition Criteria: Thermal Imaging Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

TABLE 187: MEASURED CONDITION INPUT - EHV FITTINGS: DUCTOR TEST

Condition Criteria: Ductor Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

B.6.26 132kV Fittings

TABLE 188: MEASURED CONDITION INPUT - 132KV FITTINGS: THERMAL IMAGING

Condition Criteria: Thermal Imaging Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

TABLE 189: MEASURED CONDITION INPUT - 132KV FITTINGS: DUCTOR TEST

Condition Criteria: Ductor Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

B.6.27 EHV Tower Line Conductor

TABLE 190: MEASURED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: CONDUCTOR SAMPLING

Condition Criteria: Conductor Sampling Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium/Normal		1.1	10	0.5
High		1.4	10	8
Default	No data available	1	10	0.5

TABLE 191: MEASURED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: CORROSION MONITORING SURVEY

Condition Criteria: Corrosion Monitoring Survey Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium/Normal		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

B.6.28 132kV Tower Line Conductor

TABLE 192: MEASURED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: CONDUCTOR SAMPLING

Condition Criteria: Conductor Sampling Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium/Normal		1.1	10	0.5
High		1.4	10	8
Default	No data available	1	10	0.5

TABLE 193: MEASURED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: CORROSION MONITORING SURVEY

Condition Criteria: Corrosion Monitoring Survey Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low		1	6	0.5
Medium/Normal		1.1	10	0.5
High		1.4	10	6
Default	No data available	1	10	0.5

B.7 Oil Test Modifier

TABLE 194: MOISTURE CONDITION STATE CALIBRATION

> Moisture (ppm)	<= Moisture (ppm)	Moisture Score
-0.01	15.00	0
15.00	25.00	2
25.00	35.00	4
35.00	45.00	8
45.00	10,000.00	10

TABLE 195: ACIDITY CONDITION STATE CALIBRATION

> Acidity (mg KOH/g)	<= Acidity (mg KOH/g)	Acidity Score
-0.01	0.10	0
0.10	0.15	2
0.15	0.20	4
0.20	0.30	8
0.30	10,000.00	10

TABLE 196: BREAKDOWN STRENGTH CONDITION STATE CALIBRATION

> BD Strength (kV)	<= BD Strength (kV)	BD Strength Score
-0.01	30.00	10
30.00	40.00	4
40.00	50.00	2
50.00	10,000.00	0

TABLE 197: OIL TEST FACTOR CALIBRATION

> Oil Condition Score	<= Oil Condition Score	Oil Test Factor
0	50	0.90
50	200	1.00
200	500	1.05
500	1,000	1.10
1,000	10,000	1.20

TABLE 198: OIL TEST COLLAR CALIBRATION

> Oil Condition Score	<= Oil Condition Score	Oil Test Collar
0	50	0.5
50	200	0.5
200	500	0.5
500	1,000	0.5
1,000	10,000	3.0

B.8 DGA Test Modifier

TABLE 199: HYDROGEN CONDITION STATE CALIBRATION

> Hydrogen (ppm)	<= Hydrogen (ppm)	Hydrogen Condition State
-0.01	20.00	0
20.00	40.00	2
40.00	100.00	4
100.00	200.00	10
200.00	10,000.00	16

TABLE 200: METHANE CONDITION STATE CALIBRATION

> Methane (ppm)	<= Methane (ppm)	Methane Condition State
-0.01	10.00	0
10.00	20.00	2
20.00	50.00	4
50.00	150.00	10
150.00	10,000.00	16

TABLE 201: ETHYLENE CONDITION STATE CALIBRATION

> Ethylene (ppm)	<= Ethylene (ppm)	Ethylene Condition State
-0.01	10.00	0
10.00	20.00	2
20.00	50.00	4
50.00	150.00	10
150.00	10,000.00	16

TABLE 202: ETHANE CONDITION STATE CALIBRATION

> Ethane (ppm)	<= Ethane (ppm)	Ethane Condition State
-0.01	10.00	0
10.00	20.00	2
20.00	50.00	4
50.00	150.00	10
150.00	10,000.00	16

TABLE 203: ACETYLENE CONDITION STATE CALIBRATION

> Acetylene (ppm)	<= Acetylene (ppm)	Acetylene Condition State
-0.01	1.00	0
1.00	5.00	2
5.00	20.00	4
20.00	100.00	8
100.00	10,000.00	10

TABLE 204: DGA CHANGE CATEGORY CALIBRATION

> % Change	<= % Change	Change Category
-1,000.00	-5.00	Negative
-5.00	5.00	Neutral
5.00	25.00	Small
25.00	100.00	Significant
100.00	1,000.00	Large

TABLE 205: DGA TEST FACTOR CALIBRATION

> % Change	DGA Test Factor
Negative	0.90
Neutral	1.00
Small	1.10
Significant	1.20
Large	1.50

B.9 Ageing Reduction Factor

TABLE 206: AGEING REDUCTION FACTOR

Current Health Score	Ageing Reduction Factor		
< 2	1		
2 to 5.5	((Current Health Score - 2)/ 7) + 1		
> 5.5	1.5		

APPENDIX C INTERVENTIONS

Where work is carried out to either replace or refurbish an asset, that work will impact the value of the PoF and in some cases the CoF of the asset and hence a revised value of risk can be calculated for that asset. The change in the risk of the asset will be calculated by changes to the assets condition as observed or measured, being placed in the model and the model run to determine these changes. The change in risk will be calculated as the level of risk pre-intervention less the risk post-intervention.

Where a DNO needs to predict changes to the value of the overall risk present on their network due to their proposed work programme prior to that work being carried out, then the actual condition of the plant post intervention will not be able to be recorded. This is especially a problem where a refurbishment is proposed. In these cases the principles within this appendix will be used and suitable assumption will be permitted. These assumptions will be stated when submitting the results to Ofgem.

TABLE 207: INPUT DATA AFFECTED BY REFURBISHMENT INTERVENTIONS

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected By Intervention
Complete replacement of the operating mechanism (ACB)	LV Switchgear	LV Circuit Breaker	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of complete feederway	LV Switchgear	LV Pillar (ID), LV Pillar (OD at Substation) & LV Pillars (OD not at Substation)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete factory refurbishment	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete replacement of the operating mechanism	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of the moving portion (truck) in withdrawable equipment	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary & 20kV CB (GM) Secondary	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years
Complete factory refurbishment	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier

	Health Index Asset		Input Data Affected By	
Refurbishment Intervention Activity	Category	Asset Register Category	Intervention	
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Complete replacement of the operating mechanism	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Replacement of cable boxes	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Replacement of the moving portion (truck) in withdrawable equipment	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years	
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM) & 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Complete replacement of the operating mechanism	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM), 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Replacement of cable boxes	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM), 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	

Refurbishment Intervention Activity	bishment Intervention Activity Health Index Asset Category		Input Data Affected By Intervention	
Replacement of the moving portion (truck) in withdrawable equipment	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM) & 33kV CB (Gas Insulated Busbars)(ID) (GM)	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years	
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Complete replacement of the operating mechanism	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Replacement of cable boxes	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Complete factory refurbishment	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Installation of replacement windings	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken	
On site processing to recondition oil to remove moisture and acidity from windings	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	
Replacement of cooling radiators	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs	
Complete factory refurbishment	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier	

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected By Intervention
Installation of replacement windings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	i) Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs, Oil Test Modifier, DGA Test Modifier, FFA Test Modifier and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken
On site processing to recondition oil to remove moisture and acidity from windings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing Oil Test Modifier
Replacement of bushings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cooling radiators	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of gaskets & seals	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of Tapchangers or full replacement of Tapchanger mechanism	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	i) Reassess Health Score Modifier for Tapchanger subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Where Tapchanger is replaced: revise age of Tapchanger subcomponent, used in the calculation of Initial Health Score, to the age of the new Tapchanger
Complete factory refurbishment	132kV Transformer	132kV Transformer	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Installation of replacement windings	132kV Transformer	132kV Transformer	i) Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs, Oil Test Modifier, DGA Test Modifier, FFA Test Modifier and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected By Intervention
On site processing to recondition oil to remove moisture and acidity from windings	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing Oil Test Modifier
Replacement of bushings	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cooling radiators	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of gaskets & seals	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of Tapchangers or full replacement of Tapchanger mechanism	132kV Transformer	132kV Transformer	i) Reassess Health Score Modifier for Tapchanger subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Where Tapchanger is replaced: revise age of Tapchanger subcomponent, used in the calculation of Initial Health Score, to the age of the new Tapchanger
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	LV Poles	LV Poles	Reassess Health Score Modifier by reassessing Pole decay/ deterioration Measured Condition Inputs
Small footprint steel masts: Replacement of individual steelwork members	LV Poles	LV Poles	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	HV Poles	6.6/11kV Poles & 20kV Poles	Reassess Health Score Modifier by reassessing Pole decay/ deterioration Measured Condition Inputs
Small footprint steel masts: Replacement of individual steelwork members	HV Poles	6.6/11kV Poles & 20kV Poles	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	EHV Pole	33kV Pole & 66kV Pole	Reassess Health Score Modifier by reassessing Pole decay/ deterioration Measured Condition Inputs
Small footprint steel masts: Replacement of individual steelwork members	EHV Pole	33kV Pole & 66kV Pole	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs

Refurbishment Intervention Activity	Refurbishment Intervention Activity Health Index Asset Category Asset Register Category		Input Data Affected By Intervention
Painting of Tower	EHV Tower	33kV Tower & 66kV Tower	i) Reassess Health Score Modifier for Tower Paintwork subcomponent by reassessing Paintwork Condition Input; and ii) revise age of Tower Paintwork subcomponent, used in the calculation of Initial Health Score, to the time elapsed since the Tower was most recently painted
Replacement of individual steelwork members	EHV Tower	33kV Tower & 66kV Tower	Reassess Health Score Modifier for the Tower Steelwork subcomponent by reassessing relevant Observed Condition Inputs
Replacement of Tower foundations	EHV Tower	33kV Tower & 66kV Tower	Reassess Health Score Modifier for the Tower Foundation subcomponent by reassessing relevant Observed Condition Inputs
Painting of Tower	132kV Tower	132kV Tower	i) Reassess Health Score Modifier for Tower Paintwork subcomponent by reassessing Paintwork Condition Input ii) revise age of Tower Paintwork subcomponent, used in the calculation of Initial Health Score, to the time elapsed since the Tower was most recently painted
Replacement of individual steelwork members	132kV Tower	132kV Tower	Reassess Health Score Modifier for the Tower Steelwork subcomponent by reassessing relevant Observed Condition Inputs
Replacement of Tower foundations	132kV Tower	132kV Tower Reassess Health Sc for the Tower Found subcomponent by re relevant Observed C Inputs	
Re-engineering (replacement/refurbishment/relocation) of pressurising system equipment with the objective of reducing the normal operating fluid pressure in the cable system	EHV Cable (Gas)	33kV UG Cable (Gas) & 66kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Remaking existing joints and terminations in situ	EHV Cable (Gas)	33kV UG Cable (Gas) & 66kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Replacement of cable joints and terminations (including sealing ends)	EHV Cable (Gas)	33kV UG Cable (Gas) & 66kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Re-engineering (replacement/refurbishment/relocation) of pressurising system equipment with the objective of reducing the normal operating fluid pressure in the cable system	EHV Cable (Oil)	33kV UG Cable (Oil) & 66kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Remaking existing joints and terminations in situ	EHV Cable (Oil)	33kV UG Cable (Oil) & 66kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected By Intervention
Replacement of cable joints and terminations (including sealing ends)	EHV Cable (Oil)	33kV UG Cable (Oil) & 66kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Re-engineering (replacement/refurbishment/relocation) of pressurising system equipment with the objective of reducing the normal operating fluid pressure in the cable system	132kV Cable (Gas)	132kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Remaking existing joints and terminations in situ	132kV Cable (Gas)	132kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Replacement of cable joints and terminations (including sealing ends)	132kV Cable (Gas)	132kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Re-engineering (replacement/refurbishment/relocation) of pressurising system equipment with the objective of reducing the normal operating fluid pressure in the cable system	132kV Cable (Oil)	132kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Remaking existing joints and terminations in situ	132kV Cable (Oil)	132kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)
Replacement of cable joints and terminations (including sealing ends)	132kV Cable (Oil)	132kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input)

DNO Common Network Asset Indices Methodology
--

APPENDIX D CALIBRATION - CONSEQUENCES OF FAILURE

D.1 Financial

D.1.1 Reference Financial Cost of Failure

The Reference Financial Cost of Failure is derived from an assessment of the likely repair costs incurred by the failure of the asset in each of its three failure modes²; incipient, degraded and catastrophic and relative proportions of each failure mode type (as a proportion of the total number of failures).

Reference Financial Cost of Failure =

Proportion of Failures that are Incipient Failures \times Likely Cost of Incipient Failure)

- + (Proportion of Failures that are Degraded Failures × Likely Cost of Degraded Failure)
- + (Proportion of Failures that are Catastrophic Failures \times Likely Cost of Catastrophic Failure

(Eq. 25)

Where:

- Proportion of Failures that are Incipient Failures represents the expected number of Incipient Failures as a percentage of the total number of Functional Failures.
- Proportion of Failures that are Degraded Failures represents the expected number of Degraded Failures as a percentage of the total number of Functional Failures.
- Proportion of Failures that are Catastrophic Failures represents the expected number of Catastrophic Failures as a percentage of the total number of Functional Failures.
- Likely Cost of Failure is the cost to return the asset to service (which may extend to full replacement of the asset). This is determined based on the three failure modes considered:-
 - Incipient: The costs associated with addressing an Incipient Failure would not usually necessitate full asset replacement. Unless otherwise stated, a value equivalent to 10% of the Asset Replacement Costs³ has been adopted.
 - Degraded: The costs associated with addressing a Degraded Failure would not usually necessitate full asset replacement; however the works would normally be over and above those associated with addressing an Incipient Failure. Unless otherwise stated, a value equivalent to 25% of the Asset Replacement Costs has been adopted.
 - <u>Catastrophic</u>: A failure of this type would necessitate full asset replacement.
 Asset Replacement Costs have therefore been adopted, unless otherwise stated.

For Pressurised Cables (i.e. UG Cable (Gas) or UG Cable (Oil) assets), leakage of the pressurising fluid (i.e. gas or oil) that is addressed by topping up the fluid is considered, within the

² As defined in Appendix A - Functional Failures

³ As defined in Ofgem's expert view of industry costs as used in the cost assessment for the RIIO-ED1 Final Determination

Functional Failures, as an Incipient Failure. The financial costs associated with Incipient Failures for these Asset Categories reflect the costs of such activity.

In establishing the generic and common PoF curves to describe the relative relationship between asset Health Score and PoF (Section 6.1.2) the number of failures by failure type (Incipient/Degraded/Catastrophic Failure) has been established in accordance with the definitions described in Section 4.2.

Based upon this understanding the relative proportions of a failure being an Incipient, Degraded or Catastrophic Failure have been determined for each Asset Category as outlined in Table 208.

TABLE 208: REFERENCE FINANCIAL COST OF FAILURE

Asset Register Category Functional Failures Functional Fail			Proportion		OT OT TAILS			
No. Part	Accet Bogistor Cotogory	•		Likely Cost of Failure			Reference	
No	Asset Register Category	Fun	ctional Fail	ures)				
6.6/11kV Poles 20% 70% 10% £194 £1,942 £1,942 £1,592 20kV Poles 20% 70% 10% £233 £2,330 £2,303 £2,191 33kV Pole 20% 70% 10% £250 £2,503 £2,503 £2,503 66kV Pole 20% 70% 10% £377 £3,774 £3,094 33kV Tower 80% 19,95% 0.05% £8,074 £20,186 £80,742 £10,527 32kV Tower 80% 19,95% 0.05% £9,336 £23,341 £93,364 £12,172 33kV Fittings 80% 15% 5% £113 £282 £1,126 £189 66kV Titings 80% 15% 5% £145 £363 £1,450 £243 33kV Fittings 80% 15% 5% £241 £603 £2,411 £404 33kV OHL (Tower Line) Conductor 80% 15% 5% £249 £1,073 £4,293 £719 <		1	D	С	I	D	С	or randro
20kV Poles 20% 70% 10% £233 £2,330 £1,910 33kV Pole 20% 70% 10% £250 £2,503 £2,503 £2,053 66kV Pole 20% 70% 10% £377 £3,774 £3,094 £3,094 £6,618 66kV Tower 80% 19,95% 0.05% £4,309 £10,773 £43,094 £5,618 66kV Tower 80% 19,95% 0.05% £8,074 £20,186 £80,742 £10,527 132kV Tower 80% 19,95% 0.05% £9,336 £23,341 £93,364 £12,172 33kV Fittings 80% 15% 5% £113 £282 £1,160 £243 132kV Fittings 80% 15% 5% £145 £363 £1,450 £243 132kV Fittings 80% 15% 5% £241 £603 £2,411 £404 33kV DIC Cohluctor 80% 15% 5% £249 £1,073 £4,293	LV Poles	20%	70%	10%	£136	£1,358	£1,358	£1,113
33kV Pole	6.6/11kV Poles	20%	70%	10%	£194	£1,942	£1,942	£1,592
66kV Pole 20% 70% 10% £377 £3,774 £3,094 33kV Tower 80% 19,95% 0.05% £4,309 £10,773 £43,094 £5,618 66kV Tower 80% 19,95% 0.05% £8,074 £20,186 £80,742 £10,527 132kV Tower 80% 19,95% 0.05% £9,338 £23,341 £93,364 £12,172 33kV Fittings 80% 15% 5% £113 £282 £1,126 £189 66kV Fittings 80% 15% 5% £145 £363 £1,450 £243 132kV Fittings 80% 15% 5% £241 £603 £2,411 £404 132kV Fittings 80% 15% 5% £242 £1,073 £4,293 £719 66kV OHL Crowductor 80% 15% 5% £269 £1,073 £4,293 £719 66kV OHL Croductor 80% 15% 5% £492 £1,231 £4,924 £825	20kV Poles	20%	70%	10%	£233	£2,330	£2,330	£1,910
33kV Tower	33kV Pole	20%	70%	10%	£250	£2,503	£2,503	£2,053
66kV Tower 80% 19.95% 0.05% £8,074 £20,186 £80,742 £10,527 132kV Tower 80% 19.95% 0.05% £9,336 £23,341 £93,364 £12,172 33kV Fittings 80% 15% 5% £113 £282 £1,126 £189 66kV Fittings 80% 15% 5% £141 £603 £2,411 £404 33kV OHL (Tower Line) Conductor 80% 15% 5% £241 £603 £2,411 £404 33kV OHL (Tower Line) Conductor 80% 15% 5% £429 £1,073 £4,293 £719 66kV OHL Conductor 80% 15% 5% £569 £1,423 £5,694 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,073 £4,924 £825 HY Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £11,492 33kV UG Cable (Non Pressurised) 0% 0% 100%	66kV Pole	20%	70%	10%	£377	£3,774	£3,774	£3,094
132kV Tower	33kV Tower	80%	19.95%	0.05%	£4,309	£10,773	£43,094	£5,618
33kV Fittings 80% 15% 5% £113 £282 £1,126 £189 66kV Fittings 80% 15% 5% £145 £363 £1,450 £243 132kV Fittings 80% 15% 5% £241 £603 £2,411 £404 33kV OHL (Tower Line) Conductor 80% 15% 5% £429 £1,073 £4,293 £719 66kV OHL Conductor 80% 15% 5% £429 £1,231 £4,924 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £699 £1,423 £5,694 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,231 £4,924 £825 HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0.0% 100% £2,634 £6,585 £26,340 £108 33kV UG Cable (Gas) 99% 0.50% 0.50% <	66kV Tower	80%	19.95%	0.05%	£8,074	£20,186	£80,742	£10,527
66kV Fittings 80% 15% 5% £145 £363 £1,450 £243 132kV Fittings 80% 15% 5% £241 £603 £2,411 £404 33kV OHL (Tower Line) Conductor 80% 15% 5% £429 £1,073 £4,293 £719 66kV OHL Conductor 80% 15% 5% £569 £1,423 £5,694 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,231 £4,924 £825 HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £108 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Gas) 99% 0.50% 0.50%	132kV Tower	80%	19.95%	0.05%	£9,336	£23,341	£93,364	£12,172
132kV Fittings	33kV Fittings	80%	15%	5%	£113	£282	£1,126	£189
33kV OHL (Tower Line) Conductor 80% 15% 5% £429 £1,073 £4,293 £719 66kV OHL Conductor 80% 15% 5% £569 £1,423 £5,694 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,231 £4,924 £825 HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Oil) 99% 0.09% 0.01% £100 £6,585 £26,340 £264 66kV UG Cable (Gas) 99% 0.50% £50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99%	66kV Fittings	80%	15%	5%	£145	£363	£1,450	£243
66kV OHL Conductor 80% 15% 5% £569 £1,423 £5,694 £954 132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,231 £4,924 £825 HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Gas) 99% 0.99% 0.01% £100 £6,585 £26,340 £264 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 £63,291 £116 66kV UG Cable (Gas) 99% 0.50% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99% 0.50% £100	132kV Fittings	80%	15%	5%	£241	£603	£2,411	£404
132kV OHL (Tower Line) Conductor 80% 15% 5% £492 £1,231 £4,924 £825 HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Oil) 99% 0.09% 0.01% £100 £6,585 £26,340 £26,44 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0 100% £5,329 £13,323 £53,291 £53,291 £653,291 £664 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £90,934 £190,934 £129 <	33kV OHL (Tower Line) Conductor	80%	15%	5%	£429	£1,073	£4,293	£719
HV Sub Cable 0% 0% 100% £3,030 £7,575 £151,492 £151,492 33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Oil) 99% 0.09% 0.01% £100 £6,585 £26,340 £108 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Oil) 99% 0.50% 0.50% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Oil) 99%	66kV OHL Conductor	80%	15%	5%	£569	£1,423	£5,694	£954
33kV UG Cable (Non Pressurised) 0% 0% 100% £2,634 £6,585 £26,340 £26,340 33kV UG Cable (Oil) 99% 0.09% 0.01% £100 £6,585 £26,340 £108 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Gas) 99% 0.09% 0.01% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0%	132kV OHL (Tower Line) Conductor	80%	15%	5%	£492	£1,231	£4,924	£825
33kV UG Cable (Oil) 99% 0.09% 0.01% £100 £6,585 £26,340 £108 33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Oil) 99% 0.09% 0.01% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0%	HV Sub Cable	0%	0%	100%	£3,030	£7,575	£151,492	£151,492
33kV UG Cable (Gas) 99% 0.50% 0.50% £100 £6,585 £26,340 £264 66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Oil) 99% 0.09% 0.01% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0%	33kV UG Cable (Non Pressurised)	0%	0%	100%	£2,634	£6,585	£26,340	£26,340
66kV UG Cable (Non Pressurised) 0% 0% 100% £5,329 £13,323 £53,291 £53,291 66kV UG Cable (Oil) 99% 0.09% 0.01% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable (Gas) 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Gircuit Breaker 15% <td>33kV UG Cable (Oil)</td> <td>99%</td> <td>0.09%</td> <td>0.01%</td> <td>£100</td> <td>£6,585</td> <td>£26,340</td> <td>£108</td>	33kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£6,585	£26,340	£108
66kV UG Cable (Oil) 99% 0.09% 0.01% £100 £13,323 £53,291 £116 66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable (Gas) 0% 0% 100% £4,750 £11,875 £237,500 £237,500 £237,500 £237,500 £37,500 £3,388 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 <td>33kV UG Cable (Gas)</td> <td>99%</td> <td>0.50%</td> <td>0.50%</td> <td>£100</td> <td>£6,585</td> <td>£26,340</td> <td>£264</td>	33kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£6,585	£26,340	£264
66kV UG Cable (Gas) 99% 0.50% 0.50% £100 £13,323 £53,291 £432 132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV Board (WM) 15% 25% <	66kV UG Cable (Non Pressurised)	0%	0%	100%	£5,329	£13,323	£53,291	£53,291
132kV UG Cable (Non Pressurised) 0% 0% 100% £9,093 £22,733 £90,934 £90,934 132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (WM) 15% <td< td=""><td>66kV UG Cable (Oil)</td><td>99%</td><td>0.09%</td><td>0.01%</td><td>£100</td><td>£13,323</td><td>£53,291</td><td>£116</td></td<>	66kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£13,323	£53,291	£116
132kV UG Cable (Oil) 99% 0.09% 0.01% £100 £22,733 £90,934 £129 132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% </td <td>66kV UG Cable (Gas)</td> <td>99%</td> <td>0.50%</td> <td>0.50%</td> <td>£100</td> <td>£13,323</td> <td>£53,291</td> <td>£432</td>	66kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£13,323	£53,291	£432
132kV UG Cable (Gas) 99% 0.50% 0.50% £100 £22,733 £90,934 £667 EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	132kV UG Cable (Non Pressurised)	0%	0%	100%	£9,093	£22,733	£90,934	£90,934
EHV Sub Cable 0% 0% 100% £4,750 £11,875 £237,500 £237,500 132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	132kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£22,733	£90,934	£129
132kV Sub Cable 0% 0% 100% £8,000 £20,000 £400,000 £400,000 LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	132kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£22,733	£90,934	£667
LV Circuit Breaker 15% 25% 60% £500 £1,250 £5,000 £3,388 LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	EHV Sub Cable	0%	0%	100%	£4,750	£11,875	£237,500	£237,500
LV Pillar (ID) 15% 25% 60% £697 £1,741 £6,965 £4,719 LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	132kV Sub Cable	0%	0%	100%	£8,000	£20,000	£400,000	£400,000
LV Pillar (OD at Substation) 15% 25% 60% £758 £1,895 £7,581 £5,136 LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	LV Circuit Breaker	15%	25%	60%	£500	£1,250	£5,000	£3,388
LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	LV Pillar (ID)	15%	25%	60%	£697	£1,741	£6,965	£4,719
LV UGB & LV Pillars (OD not at Substation) 15% 25% 60% £421 £1,053 £4,213 £2,854 LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	LV Pillar (OD at Substation)	15%	25%	60%	£758	£1,895	£7,581	£5,136
LV Board (WM) 15% 25% 60% £962 £2,406 £9,624 £6,520 LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694	,	15%	25%	60%	£421	•	£4,213	
LV Board (X-type Network) (WM) 15% 25% 60% £1,136 £2,839 £11,357 £7,694		_	ł			,	· '	,
	` '					,		,
	6.6/11kV CB (GM) Primary	45%	50%	5%	£2,870	£7,176	£28,705	£6,315

Asset Register Category	Relative Proportion Of Failure Modes (as a % of total Functional Failures)		Likely Cost of Failure			Reference Financial Cost	
	I	D	С	I	D	С	of Failure
6.6/11kV CB (GM) Secondary	15%	25%	60%	£855	£2,137	£8,550	£5,792
6.6/11kV Switch (GM)	15%	25%	60%	£647	£1,618	£6,471	£4,384
6.6/11kV RMU	15%	25%	60%	£1,209	£3,022	£12,089	£8,190
6.6/11kV X-type RMU	15%	25%	60%	£1,636	£4,090	£16,358	£11,083
20kV CB (GM) Primary	45%	50%	5%	£3,596	£8,990	£35,961	£7,911
20kV CB (GM) Secondary	15%	25%	60%	£886	£2,216	£8,863	£6,005
20kV Switch (GM)	15%	25%	60%	£750	£1,875	£7,500	£5,081
20kV RMU	15%	25%	60%	£1,231	£3,079	£12,315	£8,343
33kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£5,491	£13,728	£54,914	£12,081
33kV CB (Air Insulated Busbars)(OD) (GM)	45%	50%	5%	£6,761	£16,903	£67,610	£14,874
33kV CB (Gas Insulated Busbars)(ID) (GM)	45%	50%	5%	£8,318	£20,794	£83,176	£18,299
33kV CB (Gas Insulated Busbars)(OD) (GM)	45%	50%	5%	£8,318	£20,794	£83,176	£18,299
33kV Switch (GM)	45%	50%	5%	£3,881	£9,702	£38,807	£8,537
33kV RMU	45%	50%	5%	£9,590	£23,976	£95,903	£21,099
66kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£10,946	£27,365	£109,459	£24,081
66kV CB (Air Insulated Busbars)(OD) (GM)	45%	50%	5%	£17,500	£43,750	£175,000	£38,500
66kV CB (Gas Insulated Busbars)(ID) (GM)	45%	50%	5%	£19,741	£49,353	£197,413	£43,431
66kV CB (Gas Insulated Busbars)(OD) (GM)	45%	50%	5%	£19,741	£49,353	£197,413	£43,431
132kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£30,682	£76,705	£306,821	£67,501
132kV CB (Air Insulated Busbars)(OD) (GM)	45%	50%	5%	£14,446	£36,115	£144,461	£31,781
132kV CB (Gas Insulated Busbars)(ID) (GM)	45%	50%	5%	£63,902	£159,755	£639,021	£140,585
132kV CB (Gas Insulated Busbars)(OD) (GM)	45%	50%	5%	£63,902	£159,755	£639,021	£140,585
6.6/11kV Transformer (GM)	15%	25%	60%	£1,142	£2,856	£11,422	£7,739
20kV Transformer (GM)	15%	25%	60%	£1,301	£3,251	£13,005	£8,811
33kV Transformer (GM)	45%	50%	5%	£33,182	£82,954	£331,816	£73,000
66kV Transformer	45%	50%	5%	£51,001	£127,504	£510,015	£112,203
132kV Transformer	45%	50%	5%	£99,514	£248,786	£995,144	£218,932

^{*} Ofgem's expert view of industry costs from the final determination cost assessment process from RIIO-ED1. For cables and conductor are expressed on a per km basis; however the lengths replaced under fault conditions are typically less than that. Further, the cost of replacing these shorter lengths of cable or conductor is not directionally proportional to the cost of replacing much greater lengths as part of planned replacements works (i.e. the basis on which replacement costs are established). For the purposes of establishing the Reference Financial Consequence it is assumed that 10% of the costs incurred per km of activity would be incurred in carrying out a repair (typical length of 50m with a factor of 2 to reflect the lower efficiency for these types of works). For subsea cable the typical length replaced during a repair is 500m and therefore the cost of a Catastrophic Failure has been assumed to be 50% of the costs incurred per km (i.e. with no further efficiency adjustment factor).

D.1.2 Financial Consequence Factors

As described in Section 7.3.3 the resulting Reference Financial Cost of Failure value can then be modified for individual assets within an Asset Category based on the application of a Type Financial Factor and/or an Access Financial Factor to result in a Financial Consequences of Failure that reflects the characteristics of an individual asset of that type.

D1.2.1 TYPE FINANCIAL FACTORS

Type Financial Factors other than 1, may be applied to those Asset Categories shown in Table 209, using the Type Financial Factor criteria shown. For all other Asset Categories this Factor shall be set to 1. Similarly the default value of the Type Financial Factor shall be 1.

TABLE 209: TYPE FINANCIAL FACTORS

Asset Register Category	Type Financial Factor Criteria	Type Financial Factor
	Pole (excluding terminal poles)	1
6.6/11kV Poles	Pole (terminal poles)	1.7
	Small footprint steel masts	2
	Pole (excluding terminal poles)	1
20kV Poles	Pole (terminal poles)	1.7
	Small footprint steel masts	2
	≥750kVA	1.15
6.6/11kV Transformer (GM)	≥500kVA and <750kVA	1
	<500kVA	0.85
	≥750kVA	1.15
20kV Transformer (GM)	≥500kVA and <750kVA	1
	<500kVA	0.85
	Pole (excluding terminal poles)	1
33kV Pole	Pole (terminal poles)	1.7
	Small footprint steel masts	2
	Pole (excluding terminal poles)	1
66kV Pole	Pole (terminal poles)	1.7
	Small footprint steel masts	2
	Normal	1
33kV Tower	Section Angle	1.05
	Terminal	1.1
	Normal	1
66kV Tower	Section Angle	1.05
	Terminal	1.1
	33/20kV, >20MVA CMR equivalent	1.25
	33/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
2211/ Transferment (CM)	33/20kV, ≤10MVA CMR equivalent	1
33kV Transformer (GM)	33/11 or 6.6kV, >20MVA CMR equivalent	1.1
	33/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	33/11 or 6.6kV, ≤10MVA CMR equivalent	0.9

Asset Register Category	Type Financial Factor Criteria	Type Financial Factor
	66/20kV, >20MVA CMR equivalent	1.25
	66/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
	66/20kV, ≤10MVA CMR equivalent	1
CCUV Transferred (CNA)	66/33kV	1.1
66kV Transformer (GM)	66/11/11kV	1.1
	66/11 or 6.6kV, >20MVA CMR equivalent	1.1
	66/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	66/11 or 6.6kV, ≤10MVA CMR equivalent	0.9
	Normal	1
132kV Tower	Section Angle	1.05
	Terminal	1.1
	132/66kV, ≤60MVA	1.05
	132/66kV, >60MVA	1.15
	132/33kV, ≤60MVA	0.9
132kV Transformer (GM)	132/33kV, >60MVA	1
	132/11/11kV	1.1
	132/11kV	0.85
	132/20kV	0.95

D1.2.2 ACCESS FINANCIAL FACTORS

Access Financial Factors other than 1, may be applied to those Asset Categories shown in Table 210 and Table 211, using the criteria shown. For all other Asset Categories this factor shall be set to 1. Similarly the default value of Access Financial Factor shall be 1.

TABLE 210: ACCESS FACTOR: OHL

	Access Factor				
Asset Category	Type A Criteria - Normal Access (& Default Value)	Type B Criteria - Major Crossing (e.g. associated span crosses railway line, major road etc.)			
EHV OHL Support - Towers	1	1.5			
EHV OHL Fittings (Tower Lines)	1	2			
EHV OHL Conductors (Tower Lines)	1	2			
132kV OHL Support - Tower	1	1.5			
132kV OHL Fittings (Tower Lines)	1	2			
132kV OHL Conductors (Tower Lines)	1	2			

TABLE 211: ACCESS FACTOR: SWITCHGEAR & TRANSFORMER ASSETS

		Access Factor								
Asset Category	Type A Criteria - Normal Access (& Default Value)	Type B Criteria - Constrained Access or Confined Working Space	Type C Criteria - Underground substation							
LV Switchgear	1	1.25	1.7							
HV Transformer (GM)	1	1.25	2							
HV Switchgear (GM) - Distribution	1	1.25	1.7							
HV Switchgear (GM) - Primary	1	1.15	1.3							
EHV Switchgear (GM)	1	1.1	1.25							
132kV CBs	1	1.1	1.2							
EHV Transformer	1	1.1	1.35							
132kV Transformer	1	1.1	1.25							

D.2 Safety

D.2.1 Reference Safety Cost of Failure

Each Asset Category has an associated reference safety probability based on applying the appropriate value (of preventing a LTA or DSI) to the corresponding probability that each of these events occurs, categorised as follows:-

- i) LTA;
- ii) DSI to member of staff; and
- iii) DSI to member of the public.

These values have been derived from an assessment of both disruptive and non-disruptive failure probabilities for these events based on bottom up assessments of faults. These are shown in Table 212. These have been evaluated for each Asset Category and are:-

- i) probability that event could be hazardous;
- ii) probability that person who is present suffers the effect; and
- iii) probability that affected person is present when fault occurs.

The Reference Safety Cost of Failure is derived initially by applying the probability that a failure could result in an accident, serious injury or fatality to the cost of a Lost Time Accident (LTA) or Death or Serious Injury (DSI) as appropriate.

```
Reference Safety Cost of Failure =
((Probability of LTA × Cost of LTA) +
((Probability of DSI to the Public + Probability of DSI to the Staff)) ×
(Cost of DSI)) × Disproportion Factor
```

(Eq. 28)

Where:

- Cost of LTA is the Reference Cost of a Lost Time Accident as shown in Table 213
- Cost of DSI is the Reference Cost of a Death or Serious Injury as shown in Table 213
- Disproportion Factor is explained later in this section

TABLE 212: REFERENCE SAFETY PROBABILITIES

	PROBABILITY							
Asset Register Category	Lost Time Accident	Death or Serious Injury to public	Death or Serious Injury to staff					
LV Poles	0.000816	0.00003264	0.00001632					
6.6/11kV Poles	0.000272	0.00001088	0.00000544					
20kV Poles	0.000272	0.00001088	0.00000544					
33kV Pole	0.000272	0.00001088	0.00000544					
66kV Pole	0.000272	0.00001088	0.00000544					
33kV Tower	0.000136	0.00000544	0.0000272					
66kV Tower	0.000136	0.00000544	0.0000272					
132kV Tower	0.000136	0.00000544	0.0000272					
33kV Fittings	0.000544	0.00002176	0.0001088					
66kV Fittings	0.000544	0.00002176	0.0001088					
132kV Fittings	0.000544	0.00002176	0.0001088					
33kV OHL (Tower Line) Conductor	0.000544	0.00002176	0.0001088					
66kV OHL Conductor	0.000544	0.00002176	0.0001088					
132kV OHL (Tower Line) Conductor	0.000544	0.00002176	0.0001088					
HV Sub Cable	0.00000075	0.000000075	0.000000075					
33kV UG Cable (Non Pressurised)	0.00000075	0.000000075	0.000000075					
33kV UG Cable (Oil)	0.00000075	0.000000075	0.000000075					
33kV UG Cable (Gas)	0.00000075	0.000000075	0.000000075					
66kV UG Cable (Non Pressurised)	0.00000075	0.000000075	0.000000075					
66kV UG Cable (Oil)	0.00000075	0.000000075	0.000000075					
66kV UG Cable (Gas)	0.0000075	0.000000075	0.000000075					
132kV UG Cable (Non Pressurised)	0.0000075	0.00000075	0.000000075					
132kV UG Cable (Oil)	0.0000075	0.00000075	0.000000075					
132kV UG Cable (Gas)	0.00000075	0.000000075	0.000000075					
EHV Sub Cable	0.00000075	0.000000075	0.000000075					
132kV Sub Cable	0.0000075	0.00000075	0.000000075					
LV Circuit Breaker	0.00004916	0.000434412	0.000370311					
LV Pillar (ID)	0.00004916	0.000434412	0.000370311					
LV Pillar (OD at Substation)	0.00004916	0.000434412	0.000370311					
LV UGB & LV Pillars (OD not at Substation)	0.00005193	0.000458912	0.000391196					
LV Board (WM)	0.00004916	0.000434412	0.000370311					
LV Board (X-type Network) (WM)	0.00004916	0.000434412	0.000370311					
6.6/11kV CB (GM) Primary	0.000260274	0.000115	0.001960616					
6.6/11kV CB (GM) Secondary	0.0000260274	0.00023	0.000196062					
6.6/11kV Switch (GM)	0.0000260274	0.00023	0.000196062					
6.6/11kV RMU	0.0000260274	0.00023	0.000196062					

	PROBABILITY							
Asset Register Category	Lost Time Accident	Death or Serious Injury to public	Death or Serious Injury to staff					
6.6/11kV X-type RMU	0.0000260274	0.00023	0.000196062					
20kV CB (GM) Primary	0.000260274	0.000115	0.001960616					
20kV CB (GM) Secondary	0.0000260274	0.00023	0.000196062					
20kV Switch (GM)	0.0000260274	0.00023	0.000196062					
20kV RMU	0.0000260274	0.00023	0.000196062					
33kV CB (Air Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616					
33kV CB (Air Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616					
33kV CB (Gas Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616					
33kV CB (Gas Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616					
33kV Switch (GM)	0.000260274	0.000115	0.001960616					
33kV RMU	0.000260274	0.000115	0.001960616					
66kV CB (Air Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616					
66kV CB (Air Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616					
66kV CB (Gas Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616					
66kV CB (Gas Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616					
132kV CB (Air Insulated Busbars)(ID) (GM)	0.000416438	0.0000575	0.003136986					
132kV CB (Air Insulated Busbars)(OD) (GM)	0.000416438	0.0000575	0.003136986					
132kV CB (Gas Insulated Busbars)(ID) (GM)	0.000416438	0.0000575	0.003136986					
132kV CB (Gas Insulated Busbars)(OD) (GM)	0.000416438	0.0000575	0.003136986					
6.6/11kV Transformer (GM)	0.0000260274	0.00023	0.000196062					
20kV Transformer (GM)	0.0000260274	0.00023	0.000196062					
33kV Transformer (GM)	0.000260274	0.000115	0.001960616					
66kV Transformer	0.000260274	0.000115	0.001960616					
132kV Transformer	0.000416438	0.0000575	0.003136986					

The Reference Safety Costs for 'death or serious injury' and 'accident' are based on the HSE's GB cross-industry wide appraisal values for fatal injuries and for non-fatal injuries. These represent a quantification of the societal value of preventing an LTA or DSI.

TABLE 213: REFERENCE SAFETY COST

Reference safety cost	Value (£)
Lost Time Accident	£9,000
Death or Serious Injury to public	£1,600,000
Death or Serious Injury to staff	21,000,000

In addition, a disproportion factor recognising the high risk nature of the electricity distribution industry is applied. Such disproportion factors are described by the HSE guidance when identifying reasonably practicable costs of mitigation. This value is not mandated by the HSE but they state that they believe that "the greater the risk, the more should be spent in reducing it, and the greater the bias should be on the side of safety". They also suggest that the extent of the bias must be argued in the light of all the circumstances and that the factor is unlikely to be higher than 10.

In the Methodology, the factor is set to 6.25, which serves to cap the current value of preventing a fatality at £10m.

TABLE 214: REFERENCE SAFETY COST - DISPROPORTION FACTOR

Reference safety cost	Value (£)
Disproportion Factor	6.25

D.2.2 Safety Consequence Factors

As described in Section 7.4.3 the resulting Reference Safety Cost of Failure can then be modified for individual assets within that type based on the application of a Type Safety Factor and/or a Location Safety Factor to result in a Safety Consequences of Failure that reflects the characteristics of an individual asset of that type. These are detailed by Asset Category Grouping in Tables 215 to 219. Where a Type or Location rating has not been determined, then the Medium (Default) rating shall be assumed.

D.2.2.1 SWITCHGEAR & TRANSFORMERS

The overall Safety Consequence of Failure Factors for Switchgear and Transformers are determined according to Table 215.

TABLE 215: SAFETY CONSEQUENCE FACTOR

		TABLE 2	ТҮРЕ						
		Low	Medium (Default)	High					
Switchgear & Ti	Transformer Consequence Factors		No risk states e.g. Indoor, secure, SF ₆ or air.	Few but at least one risk state e.g. Indoor but less secure / secure but no arc flash protection	Many risk states e.g. Outdoor and insecure. Oil filled and pre-arc flash protection regulations.				
	Low	No risk states e.g. a remote area, no sign of interference.	0.7	0.9	1.2				
LOCATION	Medium (Default)	Few but at least one risk state e.g. in a high-risk area or evidence of interference.	0.9	1	1.4				
	High	Many risk states e.g. a high-risk area and evidence of interference.	1.2	1.4	1.6				

D.2.2.2 OVERHEAD LINES

<u>Type</u>: In assessing the equipment overhead lines are assessed with respect to the risk of interference from a member of the public (either inadvertent or deliberate). This leads to consideration of how the public could come into contact with the overhead conductors, through climbing the supports. To classify equipment in this manner consideration was given to the level of difficulty in climbing a support and how 'desirable' a support would be. Therefore the risk classification is directly related to attributes of the support which vary on a support by support basis. Table 216 details the risk classification for typical overhead line types. The assessment has

included all aspects of the overhead line design; conductors, fittings, supports, stays, anti-climbing devices and support mounted equipment.

TABLE 216: OHL - RISK OF INTERFERENCE DUE TO TYPE

	LV ABC all support types	LV Open Wire all support types	Wood Pole Lines HV and EHV	Steel lattice mast/ Tower all voltages
'A' and 'H' Type Supports	Low	Medium	Medium	High
Stayed Supports	Low	Medium	Medium	High
Supports with Cable Terminations	Low	Medium	Medium	High
Supports with Pole Mounted Equipment (Tx's, ABSD, fuses, cabinets etc)	Low	Medium	Medium	High
All other supports	Low	Low	Low	High

<u>Location</u>: In considering the risk from the surrounding land the risk of danger from interference, vandalism or unauthorised access is assessed. The table below describes the risk classification for a typical span of overhead line.

TABLE 217: OHL - RISK OF INTERFERENCE DUE TO LOCATION

TABLE 217. OFL - RISK OF INTERPERENCE DUE TO LOCATION								
Type of Recreational Area	Location Risk							
Children's playgrounds	High							
Fishing and Sailing locations (inc. Windsurfing)	High							
Camping and Caravan Sites	High							
Chalet type developments where occupancy is for a short period	High							
Permanent showgrounds for agricultural, festival or similar purposes	High							
Common land used for recreational activities (e.g. parkland, kite flying, wasteland where youths gather etc)	High							
Allotments	Medium							
Sports grounds and stadiums	Medium							
Golf Courses	Medium							
Schools	High							
Business premises with portable machinery	High							
Arable land where farm machinery is used	Medium							
Areas prone to vandalism	High							
Domestic Private Gardens	High							
Footpaths (inc. Disused Railways)	Medium							

The Safety Consequences Factor for overhead line asset types is then determined according to Table 218.

TABLE 218: SAFETY CONSEQUENCE FACTOR FOR OHL

		TYPE						
OHL Cor	nsequence Factors	Low	Medium (Default)	High				
	Low	0.7	0.9	1.2				
LOCATION	Medium (Default)	0.9	1	1.4				
	High	1.2	1.4	1.6				

D.2.2.3 CABLES

For cables there is a significant level of inherent safety of these asset types given the majority of the assets are buried. However it is considered appropriate to modify the Reference Safety Cost of Failure to account for those situations where cables are exposed above ground, e.g. cable structures or where cables terminate onto overhead line supports.

The overall Safety Consequence of Failure Factors for cable asset types are determined according to Table 219.

TABLE 219: SAFETY CONSEQUENCE FACTOR FOR CABLES

		TYPE						
Cables Co	onsequence Factors	Low	Medium (Default)	High				
	Low	0.7	0.9	1.2				
LOCATION	Medium (Default)	0.9	1	1.4				
	High	1.2	1.4	1.6				

D.3 Environmental

D.3.1 Reference Environmental Cost of Failure

The Environmental Consequences of Failure value for an asset is derived using a Reference Environmental Cost of Failure, which is modified for individual assets using asset specific factors. This is based on an assessment of the typical environmental impacts of a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. The Reference Environmental Cost of Failure that shall be used for each Asset Category is shown in Table 221.

This assessment considers four factors;

- i) Volume of oil lost;
- ii) Volume of SF6 lost;
- iii) Probability of failure leading to a fire; and
- iv) Quantity of waste produced.

```
Reference Environmental Cost of Failure =  (\% \ of \ Incipient \ Failures) \times ((Volume \ of \ oil \ lost \ per \ Incipient \ failure \times \\ Environmental \ cost \ per \ litre \ oil \ (\pounds/litre)) + (Volume \ of \ SF_6 \ lost \ per \ Incipient \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Incipient \ failure \times Environmental \ cost \ of \ fire) + \\ (Quantity \ of \ waste \ produced \ per \ incipient \ failure \times Environmental \ cost \ per \ tonne \ waste \ (\pounds/t))) + \\ (\% \ of \ Degraded \ Failures) \times ((Volume \ of \ oil \ lost \ per \ Degraded \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Degraded \ failure \times \\ Environmental \ cost \ per \ litre \ oil \ (\pounds/litre)) + (Volume \ of \ SF_6 \ lost \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ kg \ of \ SF_6 \ lost \ (\pounds/kg)) + \\ (Probability \ of \ failure \ leading \ to \ a \ fire \ per \ Catastrophic \ failure \times \\ Environmental \ cost \ per \ tonne \ waste \ (\pounds/t))))
```

Where:

- Environmental cost per litre oil = £36.08/litre
- Environmental cost per kg of SF₆ lost = £240/kg
 Which is derived from:
 - Traded carbon price = £10.04/tonne
 - Cost of SF₆ loss c/w cost of carbon = $23,900 \text{kg}(\text{CO}_2)/\text{kg}$
- Environmental cost of fire = £5,000
- Environmental cost per tonne waste = £150/tonne

The source for the above costs are shown in Table 220.

TABLE 220: SOURCES OF INFORMATION FOR ENVIRONMENTAL REFERENCE CASE

Fixed value	Source				
Environmental cost per litre oil (£/litre)	This is derived from the EU trading value for carbon emissions and is consistent with the value used in Ofgem's RIIO-ED1 Cost Benefit Analysis template (used for the RIIO-ED1 submissions) (at 2012/13 prices)				
Traded carbon price (£/t)	https://www.gov.uk/carbon-valuation (note: 2016 to 2030 DECC's updated traded sector carbon values published Oct 2012, 2031 onwards based on DECC carbon values published Oct 2011.) http://www.defra.gov.uk/publications/2012/05/30/pb13773-2012-ghg-conversion/ (note: figures taken from 2012 Guideline to Defra / DECC's GHG conversion factors for company reporting, 'new 2010' factor annex 3 table 3(c).				
Conversion factor for cost of SF ₆ loss c/w cost of carbon (kg CO ₂ e/kg)	2011/12 Defra conversion factor (at 2012/13 prices)				

The detailed breakdown of the Reference Environmental Cost of Failure by Asset Category is shown in Table 221.

(Eq. 30)

TABLE 221: REFERENCE ENVIRONMENTAL COST OF FAILURE

Asset Category	Average volume of oil lost per failure (litres) Average volume of SF6 lost per failure (kg)		Average probability that failure results in a fire		Average quantity of waste per failure (t)			Failures as % of All Failures			Reference Environmental Consequence					
	- 1	D	С	I	D	С	I	D	С	I	D	С	I	D	С	
LV OHL Support	0	0	0	0	0	0	0	0	0.0005	0.5	0.5	0.5	49%	49%	2%	75.1
HV OHL Support - Poles	0	0	0	0	0	0	0	0	0.0005	0.5	0.5	0.5	49%	49%	2%	75.1
EHV OHL Support - Poles	0	0	0	0	0	0	0	0	0.0005	0.5	0.5	0.5	49%	49%	2%	75.1
EHV UG Cable (Gas)	0	0	0	0	0	0	0	0	0.001	0.2	0.2	10	45%	54%	1%	44.7
132kV UG Cable (Gas)	0	0	0	0	0	0	0	0	0.001	0.3	0.3	15	45%	54%	1%	67.1
EHV UG Cable (Oil)	120	120	1200	0	0	0	0	0	0.001	0.8	0.8	40	45%	54%	1%	4898.1
132kV UG Cable (Oil)	150	150	1500	0	0	0	0	0	0.001	1.2	1.2	60	45%	54%	1%	6167.3
LV Switchgear	0	0	0	0	0	0	0	0.0002	0.005	0.01	0.1	0.25	50%	30%	20%	18.1
LV UGB	0	0	0	0	0	0	0	0.0002	0.05	0.01	0.1	0.5	50%	30%	20%	70.6
HV Switchgear (GM) - Primary	10	50	150	0.2	0.4	0.7	0	0.0005	0.01	0.1	0.2	0.5	65%	30%	5%	1140.5
HV Switchgear (GM) - Distribution	10	50	150	0.1	0.2	0.5	0	0.0005	0.01	0.1	0.2	0.5	65%	30%	5%	1108.1
EHV Switchgear (GM)	25	125	250	0.2	0.5	1	0	0.0005	0.01	0.2	0.5	2	70%	20%	10%	2588.5
132kV CBs	50	250	1000	0.5	1	2	0	0.0005	0.01	0.3	2	10	70%	20%	10%	7101.8
HV Transformer (GM)	20	100	300	0	0	0	0.0002	0.002	0.02	1	2	5	50%	40%	10%	3170.9
EHV Transformer	50	250	2500	0	0	0	0.0002	0.002	0.02	0.2	3	30	50%	40%	10%	14189.5
132kV Transformer	100	500	5000	0	0	0	0.0002	0.002	0.02	0.5	10	100	50%	40%	10%	29212
EHV UG Cable (Non Pressurised)		0			0		0.001		4		100%		605			
132kV UG Cable (Non Pressurised)		0			0			0.001		6				100%		905
Submarine Cables		0			0			0			20			100%		3000
EHV OHL Support - Towers		0 0				0.001			1			100%		155		
132kV OHL Support - Tower		0	0 0			0.001			1			100%		155		
EHV OHL Fittings	0			0			0.001		0.5				100%		80	
132kV OHL Fittings	0			0			0.001		0.5			100%		80		
EHV OHL Conductor (Tower Lines)		0			0			0.001			0.5			100%		80
132kV OHL Conductor (Tower Lines)		0			0			0.001			0.5			100%		80

D.3.2 Environmental Consequence Factors

As described in Section 7.5.2 the resulting Reference Environmental Cost of Failure can then be modified for individual assets within that type based on the application of a Type Environmental Factor, Size Environmental Factor and/or a Location Environmental Factor to result in an Environmental Consequences of Failure that reflects the characteristics of an individual asset of that type. These are shown in Table 222 by Asset Category Grouping. The default value for any Environmental Consequence Factor is 1.

TABLE 222: TYPE ENVIROMENTAL FACTOR

Type environment factor	Oil	SF ₆	Neither				
HV Switchgear (GM) - Primary	0.94	0.08	0.02				
HV Switchgear (GM) - Distribution	0.97	0.05	0.02				
EHV Switchgear (GM)	0.97	0.06	0.03				
132kV CBs	0.97	0.06	0.03				

All other Asset Categories are set to a default Type Environmental Factor of 1.

TABLE 223: SIZE ENVIRONMENTAL FACTOR

Asset Register Category	Size Environmental Factor Criteria	Size Environmental Factor
6.6/11kV Transformer (GM)	≥750kVA	1.15
	≥500kVA and <750kVA	1
	<500kVA	0.85
20kV Transformer (GM)	≥750kVA	1.15
	≥500kVA and <750kVA	1
	<500kVA	0.85
33kV Transformer (GM)	33/20kV, >20MVA CMR equivalent	1.25
	33/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
	33/20kV, ≤10MVA CMR equivalent	1
	33/11 or 6.6kV, >20MVA CMR equivalent	1.1
	33/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	33/11 or 6.6kV, ≤10MVA CMR equivalent	0.9
66kV Transformer (GM)	66/20kV, >20MVA CMR equivalent	1.25
	66/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
	66/20kV, ≤10MVA CMR equivalent	1
	66/33kV	1.1
	66/11/11kV	1.1
	66/11 or 6.6kV, >20MVA CMR equivalent	1.1

Asset Register Category	Size Environmental Factor Criteria	Size Environmental Factor
	66/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	66/11 or 6.6kV, ≤10MVA CMR equivalent	0.9
132kV Transformer (GM)	132/66kV, ≤60MVA	1.05
	132/66kV, >60MVA	1.15
	132/33kV, ≤60MVA	0.9
	132/33kV, >60MVA	1
	132/11/11kV	1.1
	132/11kV	0.85
	132/20kV	0.95

All other Asset Categories are set to a default Size Environmental Factor of 1.

TABLE 224: LOCATION ENVIRONMENTAL FACTOR

		Proximity factor	Bunding factor			
Location Environmental Factor	not close to water course (>100m) or no oil	close to water course (between 50m and 100m)	very close to water course (<50m)	Bunded	not bunded	
EHV UG Cable (Oil)	1	1.5	2	n/a	1	
132kV UG Cable (Oil)	1	1.5	2	n/a	1	
HV Switchgear (GM) - Primary	1	1.5	2	n/a	1	
HV Switchgear (GM) - Distribution	1	1.5	2	n/a	1	
EHV Switchgear (GM)	1	1.5	2	n/a	1	
132kV CBs	1	1.5	2	0.5	1	
HV Transformer (GM)	1	1.5	2	0.5	1	
EHV Transformer	1	1.5	2	0.5	1	
132kV Transformer	1	1.5	2	0.5	1	

All other Asset Categories are set to a default Location Environmental Factor of 1.

D.4 Network Performance

D.4.1 Reference Network Performance Cost of Failure (LV & HV)

The Reference Network Performance Cost of Failure is based on an assessment of the typical network costs incurred by a failure of the asset in each of its three failure modes as measured through its impact in relation to the number of customers interrupted and the duration of those interruptions. For regulatory purposes, this is captured via the IIS mechanism.

TABLE 225: COSTS USED IN DERIVATION OF NETWORK PERFORMANCE REFERENCE COST OF FAILURE

Parameter	£ (at 2012/13 prices)
Cost of CML	£0.38 (£22.60 for one customer hour lost)*
Cost of CI	£15.44*

^{*} Pre-IQI values for IIS incentive rates

By Asset Category an assessment is made of the typical numbers of customers interrupted by a fault for each failure mode, and the typical time to restore supplies. These are multiplied by the relevant cost of a customer interruption (Cost of CI) and cost of a customer minute lost (Cost of CML) to produce a cost per failure per failure mode. These are then weighted using the relative probabilities of each failure mode to produce a single Reference Network Performance Cost of Failure by asset type.

Reference Network Performance Cost of Failure = $(\text{Cost of CML} \times 60 \times \text{Reference Number of CC} \times \text{Switching Time}) + (\text{Cost of CML} \times 60 \times \text{Reference Number of CC} \times \text{Restoration Time} \times \%$ of CC off supply after switching)

(Eq. 35)

+ (Cost of CI imes Reference Number of CC)

Where:

- CC = Connected Customers
- Switching Time and Restoration Time are durations (in hours)

Table 226 summarises this.

TABLE 226: REFERENCE NETWORK PERFORMANCE COST OF FAILURE FOR LV & HV ASSETS

Asset Category	Base number of connected customers	Proportion of connected customers restored through immediate (< 3min) switching	Proportion of customers restored After manual switching	Manual switching time (hours)	Typical repair time (hours)	Reference Network Performance Cost (£)
LV OHL Support	80	0%	0%	1	5	£1,208
HV OHL Support - Poles	800	60%	94%	0.5	4	£1,290
HV Transformer (GM) - Primary	1000	60%	94%	0.5	4	£9,672
HV Switchgear (GM) - Distribution	1000	60%	94%	0.5	4	£9,672
HV Switchgear (GM) - Primary	1000	60%	94%	0.5	4	£9,672

Page 166

Asset Category	Base number of connected customers	Proportion of connected customers restored through immediate (< 3min) switching Proportion of customers restored After manual switching		Manual switching time (hours)	Typical repair time (hours)	Reference Network Performance Cost (£)
LV Circuit Breaker	200	0%	85%	1	7	£12,354
LV Pillar	200	25%	89%	1	7	£9,186
LV UGB	200	25%	89%	1	7	£9,786
LV Board (WM)	200	25%	89%	1	7	£9,186

D.4.2 Reference Network Performance Cost of Failure (EHV & 132kV)

For EHV and 132kV assets the Reference Network Performance Cost of Failure is based on an assessment of the amount of Load at Risk during three stages of failure, and the typical duration of each stage:-

- i) During fault (T1);
- ii) During initial switching (T2); and
- iii) During repair time (T3).

```
Reference Network Performance Cost of Failure = ((VoLL \times Load \ at \ risk \ in \ T1 \times Duration \ of \ T1) + (VoLL \times Load \ at \ risk \ in \ T3 \times Duration \ of \ T3)) \times Probability \ of further coincident outage
```

(Ea. 39)

To calculate the Reference Network Performance Cost of Failure for EHV and 132kV assets, typical values of Load at Risk have been used, for each Asset Category. These are based upon an assumption of maximum demand that would be affected by failure of the asset.

For linear assets (Cables and OHL), the maximum demand that is used to derive the reference costs is determined by applying a likely utilisation to a typical circuit rating for circuits of that voltage.

For discrete plant assets, the load at risk is more quantifiable and therefore the maximum demand that is used to derive the reference costs is based on the rating of the asset (in the case of transformers) or the board at the substation in the case of switchgear (it is assumed half of the switchboard would be out of commission for the catastrophic failure of a circuit breaker).

This load value is then multiplied by the relevant Value of Lost Load (VoLL) to derive a typical Reference Network Performance Cost of Failure for these assets. The value of VoLL adopted in this instance is £18,143 (Para 4.11 of Ofgem's document titled "Strategy decision for the RIIO-ED1 electricity distribution price control - Reliability and safety" quotes the link between the IIS CI and CML setting for RIIO-ED1 to the VoLL set in RIIO-T1, of £16,000. This has been inflated to 2012/13 prices).

Table 227 shows the values of Reference Network Performance Cost of Failure that shall be used for EHV and 132kV assets. This table also shows the maximum demand used to derive these reference costs. The value of Load Factor that is applied in the calculation of Network Performance Consequences shall be calculated using these maximum demand values.

TABLE 227: REFERENCE NETWORK PERFORMANCE COST OF FAILURE FOR EHV & 132KV ASSETS (SECURE)

Asset Category	Maximum Demand Used To	nd Load at Risk (MVA) as % of Maximum Demand To				ne (hou		Probability of a	Reference Cost For
	Derive Reference Cost (MVA)	During T1 period	During T2 period	During T3 period	T1	T2	Т3	coincident fault per hr	Assets In Secure Networks (£)
33kV Pole	9	100%	100%	80%	0	3	5	0.050%	£457
66kV Pole	18	100%	100%	80%	0	3	5	0.050%	£914
33kV Tower	9	100%	100%	80%	0	3	24	1.000%	£7,250
66kV Tower	18	100%	100%	80%	0	3	36	1.000%	£20,770
132kV Tower	36	100%	100%	80%	0	3	36	1.000%	£41,540
33kV Fittings	9	100%	100%	80%	0	3	9	0.050%	£167
66kV Fittings	18	100%	100%	80%	0	3	9	0.050%	£333
132kV Fittings	36	100%	100%	80%	0	3	9	0.050%	£666
33kV OHL (Tower Line) Conductor	9	100%	100%	80%	0	3	9	0.050%	£167
66kV OHL Conductor	18	100%	100%	80%	0	3	9	0.050%	£333
132kV OHL (Tower Line) Conductor	36	100%	100%	80%	0	3	9	0.050%	£666
33kV UG Cable (Non Pressurised)	10.5	100%	100%	80%	0	3	30	0.050%	£2,572
33kV UG Cable (Oil)	10.5	100%	100%	80%	0	3	30	0.050%	£3
33kV UG Cable (Gas)	10.5	100%	100%	80%	0	3	30	0.050%	£26
66kV UG Cable (Non Pressurised)	21	100%	100%	80%	0	3	30	0.050%	£5,144
66kV UG Cable (Oil)	21	100%	100%	80%	0	3	30	0.050%	£5
66kV UG Cable (Gas)	21	100%	100%	80%	0	3	30	0.050%	£51
132kV UG Cable (Non Pressurised)	42	100%	100%	80%	0	3	30	0.050%	£10,287
132kV UG Cable (Oil)	42	100%	100%	80%	0	3	30	0.050%	£10
132kV UG Cable (Gas)	42	100%	100%	80%	0	3	30	0.050%	£103
EHV Sub Cable	10.5	100%	100%	80%	0	3	30	0.050%	£2,572
132kV Sub Cable	42	100%	100%	80%	0	3	30	0.050%	£10,287

Asset Category	Maximum Demand Used To	Demand Used To Demand			Time (hours)			Probability of a	Reference Cost For Assets In
	Derive Reference Cost (MVA)	During T1 period	During T2 period	During T3 period	T1	T2	ТЗ	coincident fault per hr	Secure Networks (£)
33kV CB (Air Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	£24,248
33kV CB (Air Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	£12,274
33kV CB (Gas Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	£24,248
33kV CB (Gas Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	£12,274
33kV Switch (GM)	30	100%	100%	80%	0	2	100	0.050%	£12,274
33kV RMU	30	100%	100%	80%	0	2	100	0.050%	£12,274
66kV CB (Air Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	£24,248
66kV CB (Air Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	£12,274
66kV CB (Gas Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	£24,248
66kV CB (Gas Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	£12,274
132kV CB (Air Insulated Busbars)(ID) (GM)	80	100%	100%	80%	0	1	400	0.050%	£128,126
132kV CB (Air Insulated Busbars)(OD) (GM)	80	100%	100%	80%	0	1	100	0.050%	£32,331
132kV CB (Gas Insulated Busbars)(ID) (GM)	80	100%	100%	80%	0	1	400	0.050%	£128,126
132kV CB (Gas Insulated Busbars)(OD) (GM)	80	100%	100%	80%	0	1	100	0.050%	£32,331
33kV Transformer (GM)	30	100%	100%	80%	0	2	400	0.050%	£48,197
66kV Transformer	30	100%	100%	80%	0	2	400	0.050%	£48,197
132kV Transformer	80	100%	100%	80%	0	1	800	0.050%	£255,853