


Richard O'Neill Chief Economic Advisor Federal Energy Regulatory Commission

Transmission Planning and Delivery Imperial College London 11-12 January 2013



Views expressed are not necessarily those of the Commission



## Current markets are a product of the institutional history

### We need to learn from mistakes and move forward

The magical mystery tour is waiting to take you away, waiting to take you away

Electric Market Startun

⇒ 1880-1905: innovation and competition → 1882: Edison's Pearl Street Station
 Edison (DC) v Westinghouse (AC) competition: several alternate suppliers municipal regulation ⇒ Benchmark regulation ⇒ leads to corruption ⇒ 1898 Sam Insull (a Brit) ⇒ Builds large holding company Franchised monopoly with cost-of-service ⇒ Was it fear of competition? State commissions formed





his Westerplanes

⇒1905-78: Insull's legacy

vertically integrated franchised monopoly with cost-of-service regulation

⇒state or local regulation of 90-95% of costs

⇒1935: Federal Power Act to fill regulatory gap

Sholesale rates

**S** Transmission rates

⇒1935: PUHCA to control holding companies STo regulate multi-state holding companies







### vertically integrated utilities

information asymmetry/Black box ⇒Integrated Resource Planning Service Forecast demand growth Secide to build a generator Specide on a site Splan transmission to get new generation to market So to the state regulator for approval, for example, CWIP





### Contracts

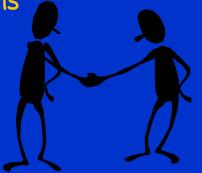
⇒ 1762 Rousseau, The Social Contract

\$ implicit agreement between the state and its citizens

#### ⇒ 1898 Insull's Regulatory bargain

- Sky Franchised monopoly
- ♦ cost-of-service

#### Contracts and property rights


- ✤ not sacrosanct
- Schanges risk/reward

### Eminent domain for transmission

- 🏷 In electric, state level
- in natural gas, FERC

## Ight and reasonable prices Not just and reasonable







### The Nuke Story Part I



1954 Strauss (Chairman, Atomic Energy Comm): "Our children will enjoy in their homes electrical energy too cheap to meter." ⇒1957 Price-Anderson Act reduced private liability ⇒1979 accident at the Three Mile Island Sheightened public concerns and spurred opposition b no new reactor orders placed. \$63 orders canceled Monopoly franchise results in 50 nuke plant owners No competition to build or operate Some better than others

#### HISTORICAL U.S. CONSTRUCTION



COST EXPERIENCE for nuclear plants under cost-of-service regulation

| Construction   | Estimated             | Actual                | %           |
|----------------|-----------------------|-----------------------|-------------|
| <b>Started</b> | <b>Overnight</b> Cost | <b>Overnight</b> Cost | <b>OVER</b> |
| 1966-67        | \$ 560/kWe            | \$1,170/kWe           | 209%        |
| 1968-69        | \$ 679                | \$2,000               | 20976       |
| 1970-71        | \$ 760                | \$2,650               | 348%        |
| 1972-73        | \$1,117               | \$3,555               | 318%        |
| 1974-75        | \$1,156               | \$4,410               | 381%        |
| 1976-77        | \$1,493               | \$4,008               | 269%        |
|                |                       |                       |             |

Source: U.S. EIA 100 cheap to too expensive

⇒1978-96: groping toward competition and renewables ⇒1978: Energy Policy Laws Public Utility Regulatory Policies Act (PURPA) ⇒Fuel Use Act School Manage fuel use Squickly repealed Natural Gas Policy Act

⇒1978 Natural Gas Policy Act Seartial wellhead deregulation SRamsey pricing and fear of running out ⇒1993 Natural Gas open access **Unbundling** SWellhead regulation Seasier pipeline Entry ⇒Declared the 'bridge fuel'



### Public Utility Regulatory Policies Act (PURPA 1978)

#### provides 'feed-in' tariffs

For cogeneration technology, renewables and waste
 At 'avoided costs' (marginal costs)
 costs were passed-through in retail prices
 SoCal Edison and NIPSCo videos (rated R for violence)

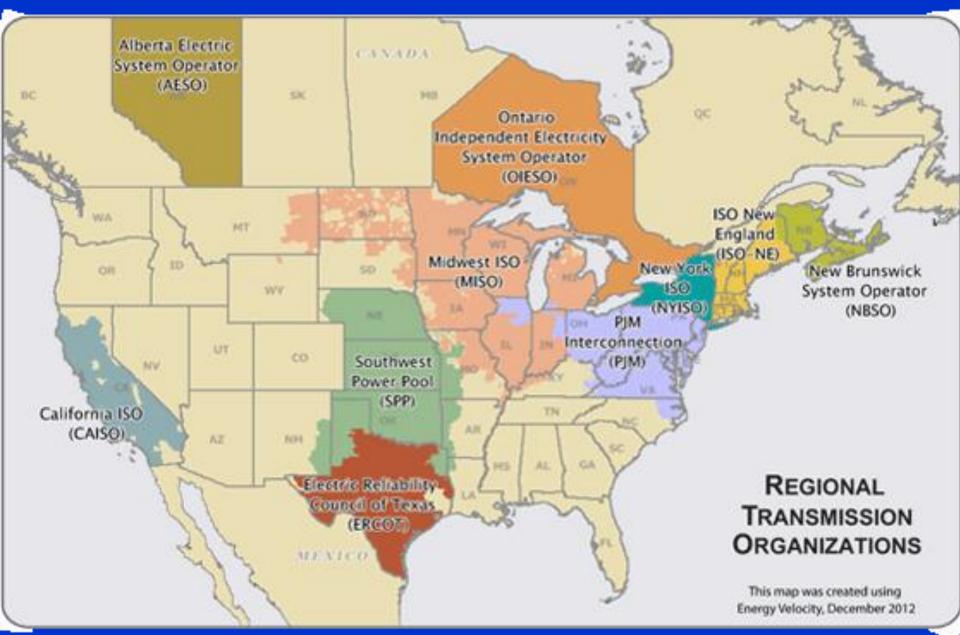
Independent power will cause blackouts

Several states embraced PURPA with gusto & concentrated in Cal, NJ, NY, PA, TX, and New England & required long-term contracts at high prices & roughly 60,000 megawatts came online & eventually 10 percent of total U.S. generation

## PURPA's impact and lessons

changed prevailing views on vertical integration.

became clear that non-utilities could build and operate generators effectively and reliably stimulated innovation in high-efficiency generation


Feed-in tariffs were too generous

created an IPP interest group for competition

⇒Changes the debate

⇒ 1996-present Vertically integrated utilities Sorder 888 electric open access Sontract path access is sporadic Independent System Operators (ISOs) Seneration competition Some transmission 'competition' Better software >2002 Standard Market Design (SMD) ⇒Natural gas Shale gas !!!!!!!!! Barnet Shale SLNG bi-polar mania Viola Ellenberger (Frac Barrier)

(Water Bearing Formation)



nuke history part II

⇒1997 70% load factor under cost-of-service Seak incentives to improve ⇒1999: Poorly performing plants sold ⇒natural incentives in ISOs ⇒2002 90% load factor Solution Nukes lower ISO prices Are nukes are making too money? STwo billion \$ returned to in MD and IL customers ⇒2012: cost over runs for new nukes!!!



MATT GROEN



# All markets are regulated the question is how?

public good magic wand; \$ easy cost allocation: tax \$ Lack of measurement \$ What is the market size? \$ are we over using the concept?





If you really like it you can have the rights It could make a million for you overnight

Reality is two part pricing or contracts

- Sontracts have multipart prices
- Scall options

club goods

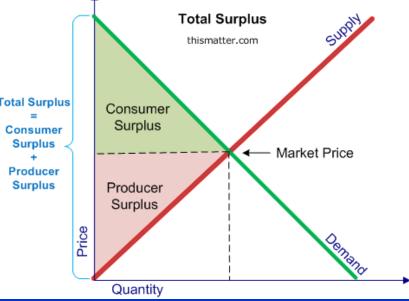
♥Usage rates

#### Allocation becomes a 'cooperative game'

- 🗞 Market size
- **Beneficaries** pay

When should the winners compensate the losers?








⇒Private good: power Solution Stroyed in consumption Servent others **S**LMPs Some argue that electricity is a public good.  $\Rightarrow$  Are there property rights to a competitive market?

### Market goals

 $\Rightarrow$  Greatest societal benefits Surplus S Maximum market surplus Price Non-convex markets Distribution of benefits Senough to finance new efficient projects SLMP (public price) ♥uplift (private price) Supplift is generic for what's left over Solve Support (local) Sontingency real power reserves



### Regulatory incentives

#### ⇔cost-of-service

SMaximize capital investment Segulator reviews prudence Sinelastic demand/flat prices ⇒ISO markets SPay LMP or FMP SMinimize costs SRegulator requires marginal cost bidding SFinancial participants check market power in forward markets

Selastic demand is a goal

### The Optimization Algorithm

#### Underlying all these markets is a single optimization

#### This model has the following features:

- Steady-state ACOPF with important N-1 contingencies
- Stransmission switching/investment
- S Unit commitment of generators
- Solution Dispatch interval: from 5 minutes or less to a month or more
- Telescoped dispatch horizon
- Summer period ramp rate constraints with time coupled pricing
- S Ancillary services co-optimization
- Sexplicit stochastic contingency costs in the objective function

difficult problem: binary variables and nonconvex continuous functions And though the holes were rather small

Offline stability analysis

real-time market maximize societal benefits ⇒Mostly private good (real power)  $\Rightarrow$  For real-time market, SLMP dominates revenue distribution: 95+% SLow uplift for make-whole and reserves ⇒Lower uncertainty Reasonable approximation????? Seanut-butter uplift **Bad** incentives ⇒Non-cooperative game theory

Happy ever after in the market place

#### day-ahead market maximize expected societal benefits ⇒Mostly private good (real power) $\Rightarrow$ For real-time market, SLMP dominates Show uplift for make-whole and reserves ⇒Lower uncertainty Reasonable approximation??? ⇒No investment cost COMMITMENT MODELS ⇒Non-cooperative game theory Edited by

Michael H. Rot Richard P. O't Hung-po Ch

### Long-term planning How do we maximize societal benefits

Mostly real option call Ad hoc, ad loc, and quid pro quo! So SWho is in the club? little time, so ⇒For transmission expansion, much to know!" Suplift may dominate ⇒Higher uncertainty Need better approximations High uplift/lumpy investment costs Cooperative game theory Let me tell you how it will be, A

### Allocating transmission Uplift or call option

Even new transmission lines may have congestion
 Revenue sources for owners

 FMP flowgate marginal price
 Uplift / call option contracts

 Uplift allocation: Beneficiaries pay

 Cooperative game theory
 Poor man's Shapley value



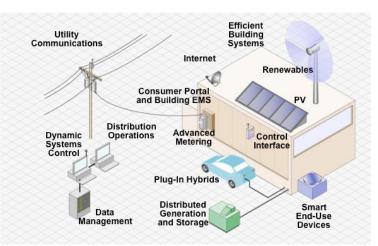
### Merchant transmission

A long and winding road

⇒Approach Section 4.1 Sectio Sesolve discrimination and sizing before construction ⇒HVDC to NYC \$2002: Cross sound cable **S**Neptune HVDC for distant wind and lower losses Swestern states →HVAC: Montana-Alberta Tie-Line (MATL)

### Participant funding Club good

Argentina/NYISO approach Search Participants agree to support S Through voting ⇒Limiting element SPJM get financial transmission rights Sor example, wave trap 




### EPAct 2005 (551 pages)

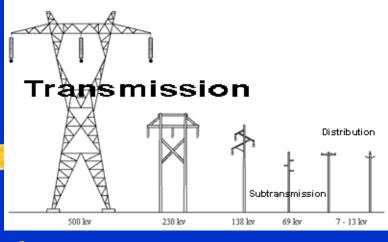
Reliability becomes mandatory to comes out of the back room \$ the refuge of scoundrels? FERC siting of transmission facilities 32401 SNarrow authority States still control the process Transmission incentives "Free money from above" Sprovide a return on equity that attracts new investment Sallow recovery of all prudently incurred costs



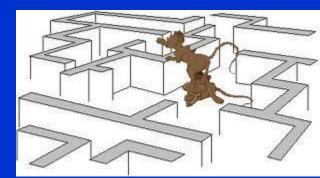
Investment in "Smart Grid" electricity infrastructure will be needed....



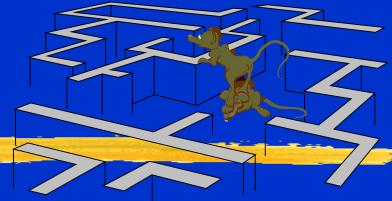
Real-time


### Smart grid

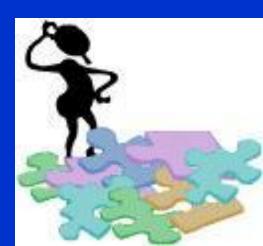
Pre-meters: priced based on the number of light bulbs → Meters allowed \$/KWh Better and faster measurement ⇒ better models need better software → Greater market participation Sor example, refrigerators Dispatchable distributed resources Part of the solution Non-dispatchable resources Sector Part of the problem


### Order 1000 Federal IRP?

#### No right of first refusal

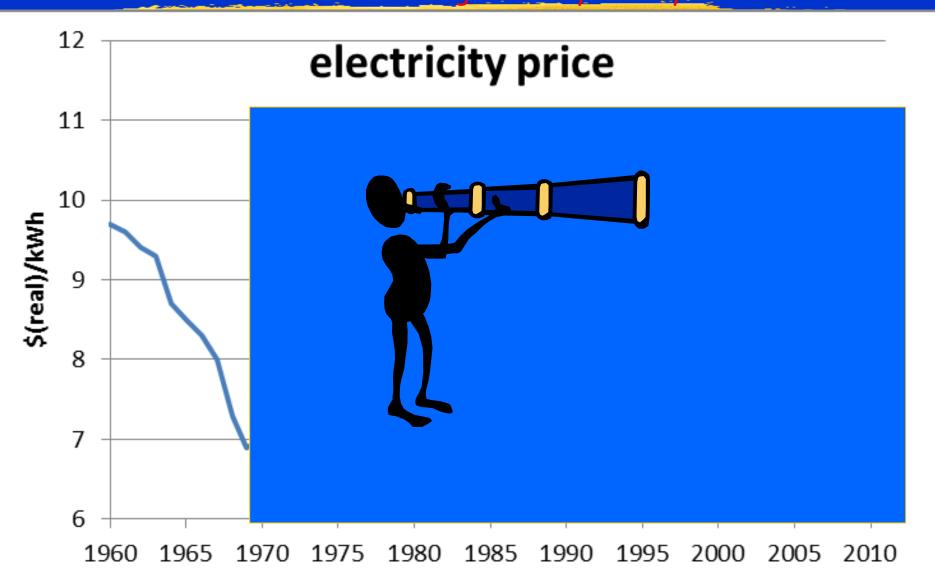

'Reliability' investments Easier to justify ♥ Value loss of load ('1 in 10'?) has a cost 'Economic' investments Seldom used 😼 Harder to justify 'taking' 'Public policy' investments **Sector** Externalities not prices SQuantity constraints on markets  $\Rightarrow$  In the end all are economic investments Beneficiaries-pay cost allocation ⇒ Regular coffee and tea



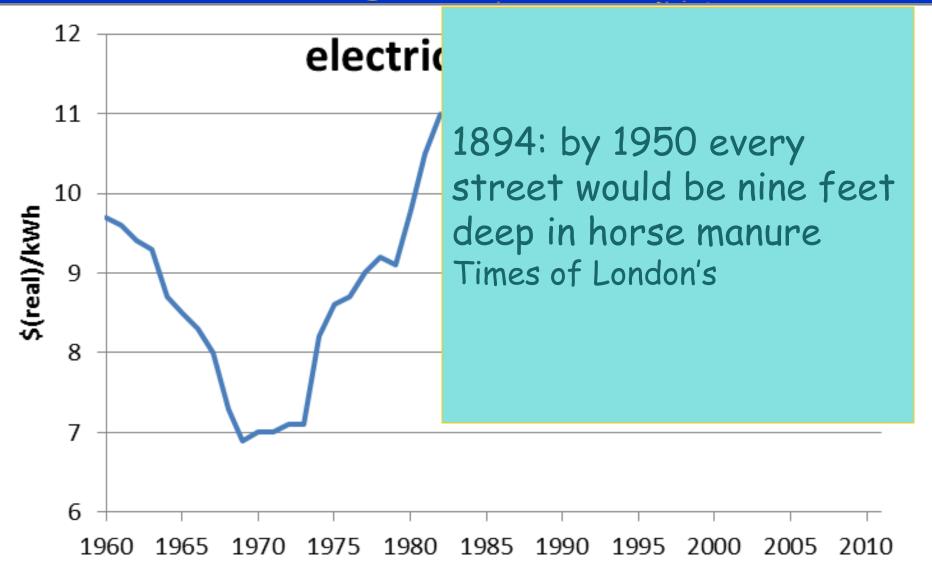




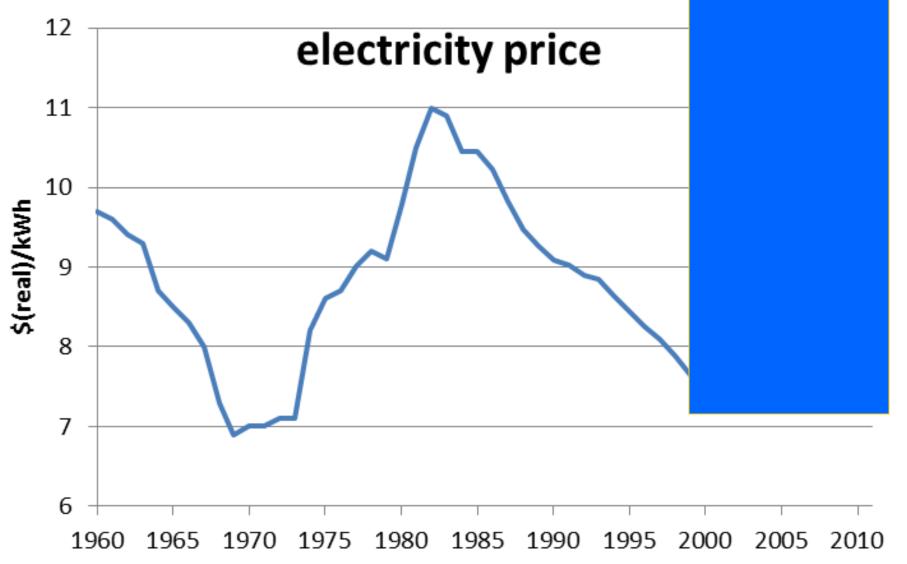

### **Optimal Planning**



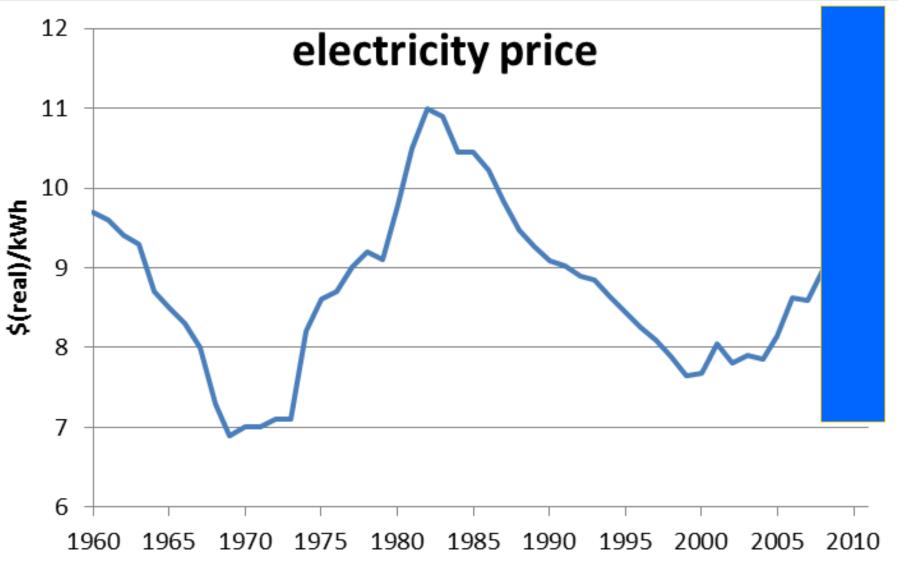

Uncertainty: Project demand, technology and externalities Take bids for new transmission projects Solve max benefits problem SFind optimal topology Sind optimal generation mix Sign transmission investments contracts at bid costs ⇒allocate expected costs to beneficaries Allow for generation entry

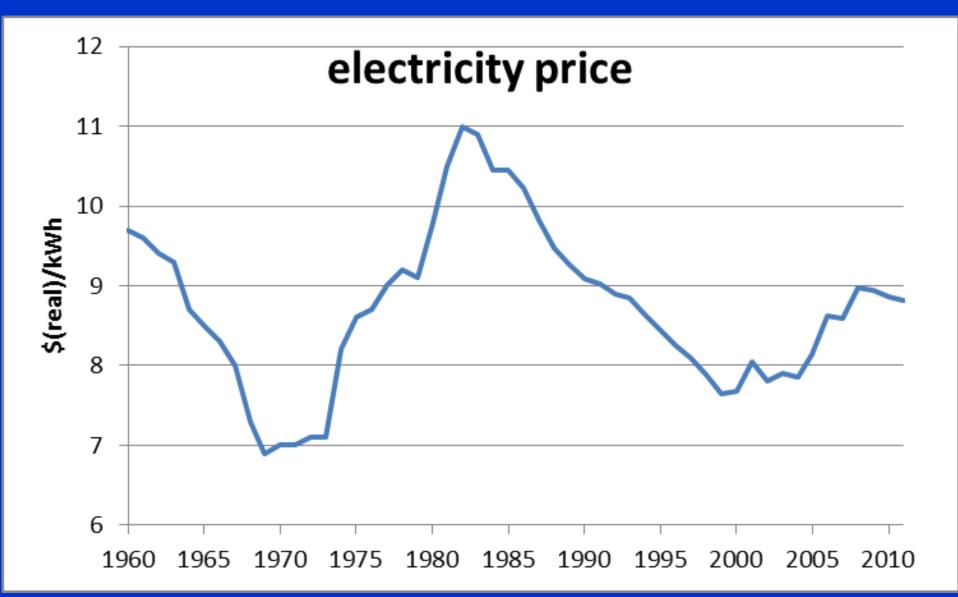



# Forecasting can we?


The magical mystery tour is waiting to take you away, Waiting to take you away

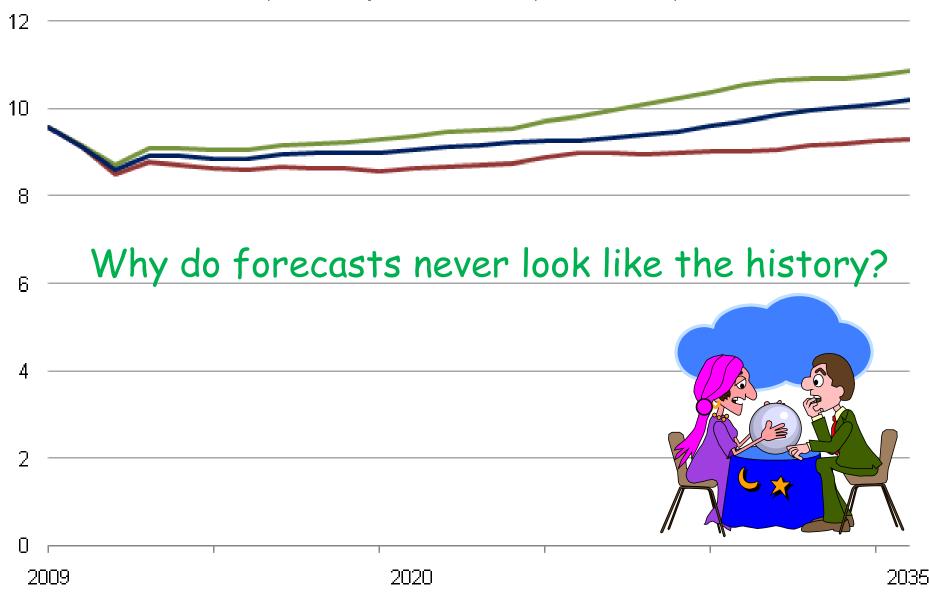



## Forecasting are we running out?




#### Forecasting excess generation? Who pays for errors?




### do we need more humility?





#### Projected High, Reference, and Low Average Annual U.S. Retail Electricity Prices

(Inflation-adjusted 2008 cents per kilowatthour)



### Interfaces are still messy

⇒Problem Sontract path fiction SLoop flow ⇒Solutions Seplace the contract path Selowgate trading **Solution** 

