> Cost effective evolution to a Low Carbon Future: *Role and Value of Demand Side Response*

Prof Goran Strbac Imperial College London

London UK Response to Climate Change Challenge

- -2020: 25% of all electricity demand to be met by renewable generation
 -2030+:
 - -Decarbonise electricity generation, while.....
 - -Electrifying (segments) of transport and heat sectors....

...in order to reduce CO2 emissions by 80% by 2050

2

Imperial College Londor Low carbon system integration challenge: degradation in asset utilization

Balancing and Need for Flexibility

leading to increased base-load & peak generation investment risks...

...while providing massive opportunities for demand side response, storage, flexible (distributed) generation

Imperial College London Understanding system integration challenge

UK Low Carbon Pathways:

- Pathway A (Renewables | High efficiency | High electrification)
- Pathway B (Nuclear | Low efficiency | High electrification)
- Pathway C (CCS | Medium efficiency | Low electrification)
- Pathway D (Core Markal)
- Objectives: Given that pathways balance energy production and consumption on annual basis, analyse the merits of, and the interaction between, alternative balancing technologies
 - Flexible generation, Interconnection, Storage, Demand side response

in minimizing the costs of integration, in short and long-term (real time balancing & infrastructure investment)

Imperial College Uptake of Low Carbon Technologies and Distribution Network Investment

London

Imperial College London **Benefits of alternative balancing technologies**

-X-EMR -O-Pathway A -D-Pathway B -A-Pathway C ->-Pathway D

2040

2050

2030

2

2020

-X-EMR -O-Pathway A -O-Pathway B -A-Pathway C ->-Pathway D

Imperial College From the Grid to Consumers

Integrating distributed energy resources: From Consumers to the Grid

Where does the flexibility come from? Critical role of LCNF

London Anything to worry about with demand response?

Managing Response: you have to be smart!

Time (h) Aggregate Demand profile

Imperial College

London

Control scheme

Imperial College London Examples: Smart Charging and V2G reduce emissions

Amount of saved energy is greater than the energy consumed by EVs ~15% EV

Imperial CollegeLondonDSR in commercial sector:opportunities to participate in the
capacity mechanism may be significant

10.86

7.01

4 °C

Conflicts between national energy market and local network objectives

Optimal EV response to electricity prices would increase peak demand and overload distribution networks

Complexity of DSR and Storage: Split benefits

Can the market facilitate this?

Developments in Market and Regulation

EMR & Capacity Mechanism

- Very significant international experience with DSR contributing to adequacy of supply (capacity)
- Excluding DSR from capacity mechanism may undermine its value and its future development

Network design and regulation:

- Network problems solved by network solutions
- Growing experience with DSR through LCNF
- T & D Network Design Standards: updates (and fundamental reviews) are needed

Closer integration of wholesale and retail markets: Impact on Consumers

- Smart metering rollout => Consumers, by making choices could finally drive development of electricity industry
 - Growing value of flexibility in future => energy bills of flexible consumers may be only 30% of these for inflexible consumers
 - Reliability / security differentiated pricing will be possible (relevance to capacity market?)
 - Growing experience with dynamic time-of-use tariffs
 - Will the market facilitate this choice? Fairness?

London Integrating Wholesale and Retail markets

Linking all market participants through an integrated real time marketplace

Imperial College Observations Enabling DSR: Role of future Policy, Market, Regulation, Technology, Consumers.....

Innovation, Policy, Market design

- Understanding and developing DSR flexibility (LCNF experiences)
- Enable competition between DSR and asset based solutions (generation and networks) for the provision of adequacy and balancing services through appropriate market design (DSO)
- T and D network standards:
 - Recognition of DSR and storage in network planning

Regulation:

- Incentivise application of flexible solutions against asset-based solutions
- Split Benefits and business model

Technology:

- Shift from centralised to distributed system management ICT
- Virtual Power Plant

Consumers:

Choice, reliability differentiated pricing....

> Cost effective evolution to a Low Carbon Future: *Role and Value of Demand Side Response*

Prof Goran Strbac Imperial College London