

Theme 4 – Reflecting New Technology: HVDC

Assessment of options for setting of HVDC in Transport model

Andy Wainwright and Ivo Spreeuwenberg

A Reflecting HVDC in Transport Model

- Offshore HVDC links 'Bootstraps'
 - Existing charging model based on passive network elements
 - HVDC represents an active component of the network

- Therefore in Transport model need to;
 - 1. estimate level of power flow
 - 2. calculate desired impedance

Options for calculating power flow

1. Optimal Power Flow

Derive power flow from optimal operation calculation - complex

2. Transmission Routes

Assume equal power flow on each double circuit equivalent route

3. Transmission Circuits

Assume equal power flow on each major circuit

4. Circuit Ratings

Pro-rata flows based on circuit ratings

Managing Multiple Boundaries

Options 2-4 assume flow setting based on single boundary management

In reality each bootstrap crosses multiple boundaries

 Option 4B – managing multiple boundaries through ratings

Proposed simplifying assumptions

- Flows based on Transport Model background (Year Round)
- Boundary with fewest onshore circuits used for single boundary approach most constrained boundary; B6
 - 3 onshore double circuit routes
 - 132kV circuits ignored for options 2&3, i.e. 4 circuits on 2 routes considered, due to relatively small size (capacity approx. 6% of 400kV)

- Step 1 Ascertain total <u>rating</u> of circuits across boundary in Transport model including HVDC
 - B6 total = 10844MW

- Step 2 Ascertain <u>flow</u> across boundary in Transport model YR background without HVDC
 - B6 total = 5889MW

Step 3 – Calculation of desired HVDC flow. For single boundaries*;

 $BF_{MW} * HVDC_{cap} / N_R$

 $BF_{MW} * HVDC_{cap} / N_{C}$

- 2. Transmission Routes
- 3. Transmission Circuits
- 4. Circuit Ratings;
 - a. single boundary $BF_{MW} * HVDC_{cap} / BR$

Where;

 $BF_{MW} = MW$ boundary flow from Transport model with no HVDC

- HVDC_{cap} = MW capacity of HVDC circuit
- N_R = No. of routes across boundary
- N_{C} = No. of circuits across boundary
- BR = total rating of boundary

*Note: Optimum power flow method not investigated

2. Transmission Routes *Desired flow: 1963MW*

- 3. Transmission Circuits Desired flow: 1178MW
- 4. Circuit Ratings;
 - a. single boundary *Desired flow: 1086MW*
 - b. multiple boundaries *Desired flow: 808MW*

Impact on tariffs

- Desired flows need to be converted into impedances in Transport model
- Matrix developed for this calculation
- Table contains Transport model input assumptions

Calculation Method	Cost Option	EF	400kV OHL km	x	Flow	Total flow cost
2	В	5.6	2064.9	1.92	1963	4053398.7
	С	10.1	3754.4	1.92	1963	7369887.2
3	В	5.6	2064.9	4.86	1178	2432452.2
	С	10.1	3754.4	4.86	1178	4422683.2
4a	В	5.6	2064.9	5.5	1086	2242481.4
	С	10.1	3754.4	5.5	1086	4077278.4
4b	В	5.6	2064.9	8.2	808	1668439.2
	С	10.1	3754.4	8.2	808	3033555.2

Impact on tariffs – generation

Only full cost EF results shown for clarity 50 40 30 Tariff (£/kW) 20 ↔ No HVDC 10 0 — 4aC <u> 4bC</u> -10 -20 1 10 11 12 13 14 15 16 17 18 19 20 g **Generation Zone**

2 – Routes; 3 – Circuits; 4a – Ratings (single); 4b – Ratings (multiple)

2011/12 Revenue + 2015/16 Transport Model