nationalgrid

THE POWER OF ACTION

Theme 4 - Reflecting New Technology: HVDC

Assessment of options for setting of HVDC in Transport model
Andy Wainwright and Ivo Spreeuwenberg
(4)

Reflecting HVDC in Transport Model

- Offshore HVDC links - 'Bootstraps'
- Existing charging model based on passive network elements
- HVDC represents an active component of the network

■ Therefore in Transport model need to;

1. estimate level of power flow
2. calculate desired impedance

Options for calculating power flow

1. Optimal Power Flow

Derive power flow from optimal operation calculation - complex
2. Transmission Routes

Assume equal power flow on each double circuit equivalent route
3. Transmission Circuits

Assume equal power flow on each major circuit

4. Circuit Ratings

Pro-rata flows based on circuit ratings

Managing Multiple Boundaries

- Options 2-4 assume flow setting based on single boundary management
- In reality each bootstrap crosses multiple boundaries
- Option 4B - managing multiple boundaries through ratings

Proposed simplifying assumptions

- Flows based on Transport Model background (Year Round)
- Boundary with fewest onshore circuits used for single boundary approach - most constrained boundary; B6
- 3 onshore double circuit routes
- 132 kV circuits ignored for options 2\&3, i.e. 4 circuits on 2 routes considered, due to relatively small size (capacity approx. 6% of 400 kV)

2015 Western HVDC Example

- Step 1 - Ascertain total rating of circuits across boundary in Transport model including HVDC

■ B6 total $=10844 \mathrm{MW}$

2015 Western HVDC Example

- Step 2 - Ascertain flow across boundary in Transport model YR background without HVDC
- B6 total = 5889MW

2015 Western HVDC Example

Step 3 - Calculation of desired HVDC flow. For single boundaries*;
2. Transmission Routes
3. Transmission Circuits

$$
B F_{M W} * H V D C_{\text {cap }} / N_{R}
$$

4. Circuit Ratings;
a. single boundary $B F_{M W}{ }^{*} H V D C_{\text {cap }} / B R$

Where;
$\mathrm{BF}_{\mathrm{Mw}}=\mathrm{MW}$ boundary flow from Transport model with no HVDC
HVDC $_{\text {cap }} \quad=$ MW capacity of HVDC circuit
$N_{R} \quad=$ No. of routes across boundary
$\mathrm{N}_{\mathrm{C}} \quad=$ No. of circuits across boundary
BR = total rating of boundary

2015 Western HVDC Example

- Step 3- Calculation of HVDC flow. For option 4B;
- Need to repeat 4A calculation for each boundary crossed
- In this case;
$B 6$ rating $=10844 \mathrm{MW}$ flow $=5889 \mathrm{MW}$

B7 $\begin{aligned} & \text { rating }=13634 \mathrm{MW} \\ & \text { flow }=5047 \mathrm{MW}\end{aligned}$
B11 rating $=26298 \mathrm{MW}$ flow $=9208 \mathrm{MW}$
B16 $\begin{aligned} \text { rating }=33490 \mathrm{MW}\end{aligned}$
flow $=13364 \mathrm{MW}$

- B6 required HVDC flow = 1086MW
- B7 required HVDC flow = 740MW
- B11 required HVDC flow $=651 \mathrm{MW}$
- B16 required HVDC flow = 753MW
- Multiple boundary result is average of four boundaries

(4)
 2015 Western HVDC Example Results

2. Transmission Routes Desired flow: 1963MW
3. Transmission Circuits Desired flow: 1178MW
4. Circuit Ratings;
a. single boundary Desired flow: 1086MW
b. multiple boundaries Desired flow: 808 MW

Impact on tariffs

- Desired flows need to be converted into impedances in Transport model
- Matrix developed for this calculation
- Table contains Transport model input assumptions

Calculation Method	Cost Option							EF		400kV OHL km		X	Flow	Total flow cost
2	B	5.6	2064.9	1.92	1963	4053398.7								
	C	10.1	3754.4	1.92	1963	7369887.2								
3	B	5.6	2064.9	4.86	1178	2432452.2								
	C	10.1	3754.4	4.86	1178	4422683.2								
4 a	B	5.6	2064.9	5.5	1086	2242481.4								
	C	10.1	3754.4	5.5	1086	4077278.4								
4b	B	5.6	2064.9	8.2	808	1668439.2								
	C	10.1	3754.4	8.2	808	3033555.2								

Impact on tariffs - generation

- Only full cost EF results shown for clarity

- 2 - Routes; 3 - Circuits; 4a-Ratings (single); 4b-Ratings (multiple)
- 2011/12 Revenue + 2015/16 Transport Model

