

Evaluating the gas mains replacement programme – preliminary findings

Presentation to capex Working Group

15 November 2010

- Context and motivation for the study
- Analysis of costs
- Analysis of benefits
- Annexe (detailed cost methodology)

We have been commissioned to evaluate the costs and benefits of continuing with the HSE's repex programme

Since 2001, the HSE has required GDNs to accelerate the replacement of all cast iron and ductile mains within 30 metres of buildings

Opportunity to re-examine the case for the programme

HSE to review the programme in 2011

Next price control starts in 2013 – need to agree repex allowances First chance to take stock of programme since 2006-07

Centrica keen to engage with industry – has commissioned Frontier to evaluate whether the programme is delivering "value for money"

We estimate the incremental costs associated with the accelerated programme...

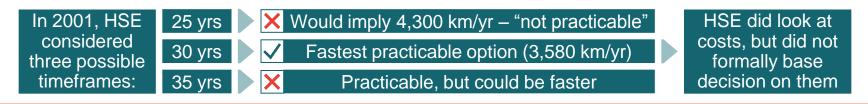
...and weigh these against any incremental benefits, such as:
fewer injuries and fatalities;
reduced shrinkage

This is new territory: HSE has never formally considered the costs and benefits of programme

The Pipeline Safety Regulations 1996 provided the framework for HSE's 2001 review...

Regulation 13

"The operator shall ensure that a pipeline is maintained in an efficient state, in efficient working order and in good repair"


Regulation 13A (introduced following 1999 incident at Larkhall)

"(1)...the Executive shall approve...a programme...if it is satisfied that the programme...is suitable and sufficient for the period to which it relates

"...(5) The operator shall so far as is practicable comply with a programme approved under this regulation"

Means that HSE made 2001 decision on grounds of "practicability"– required replacement rate of 3,580km/year because this was close to the highest rate that Transco had achieved historically

...meant that HSE based decision on "practicability", not value for money

Moreover, it is likely that the balance between the costs and the benefits will have changed since 2001...

Reported that the <u>costs</u> of the accelerated programme have increased since 2001...

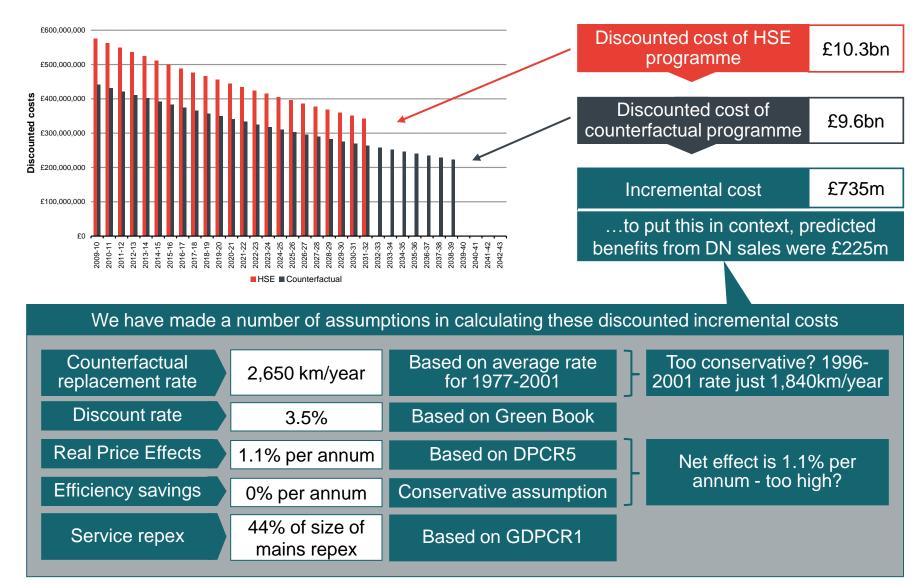
In July 2010, Ofgem suggested that the costs of the programme may have doubled to £24 billion between 2003 and 2010...

...and questioned whether the programme was still "proportionate and sustainable" ...whereas the <u>benefits</u> of continuing with the accelerated programme are likely to be diminishing

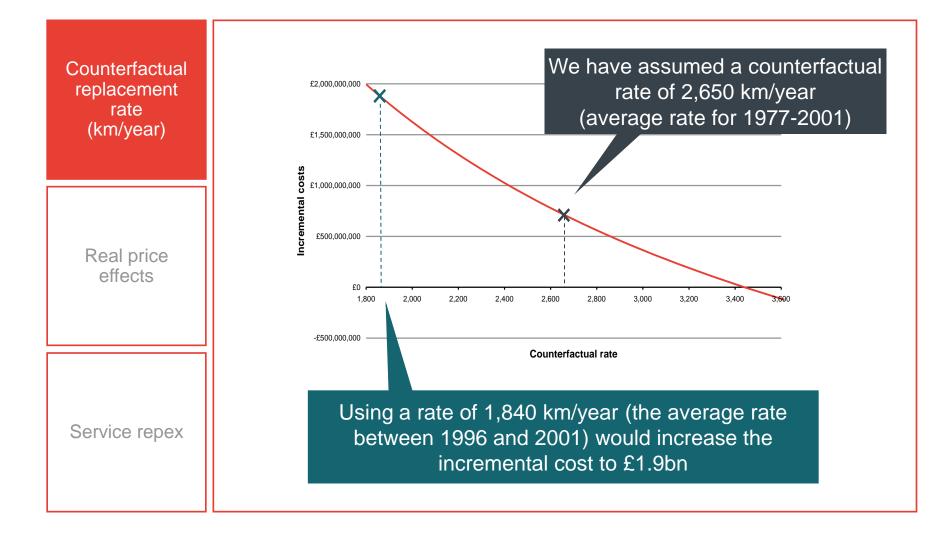
GDNs have prioritised replacement of highest-risk mains

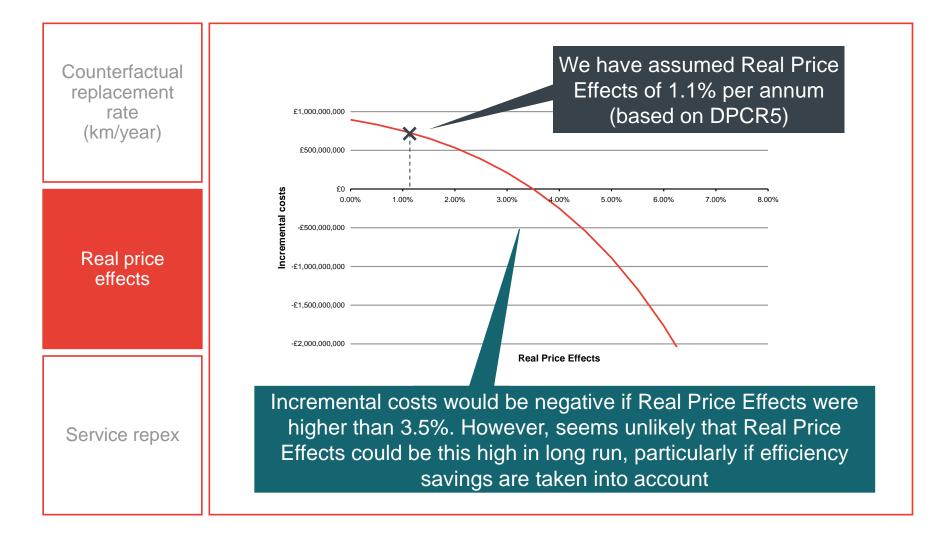
We understand that the first 25% of the replacement programme may have removed ~60% of the modelled risk ...

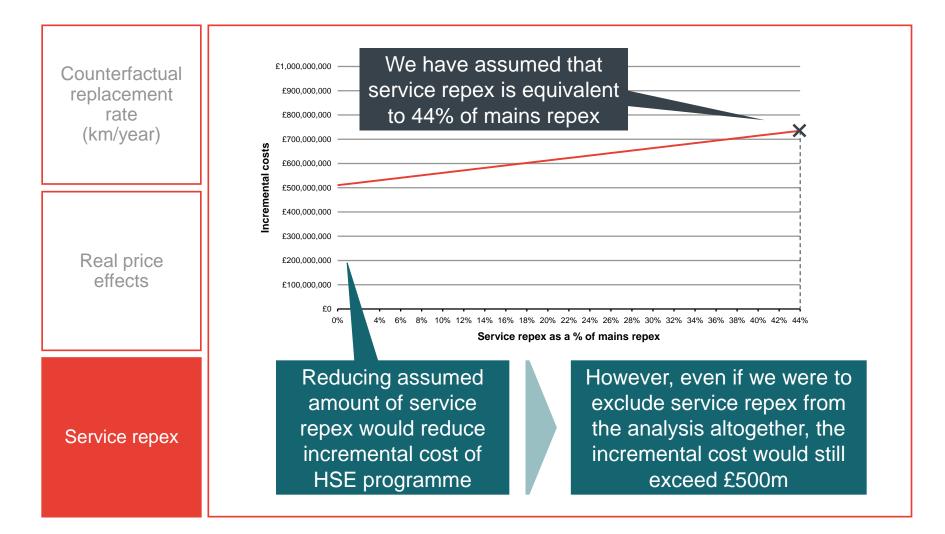
...and little evidence of 'bathtub' effects to date


... providing an additional rationale for the study

- Context and motivation for the study
- Analysis of costs
- Analysis of benefits
- Annexe (detailed cost methodology)

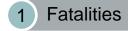

We consider the impact of continuing with the HSE's accelerated repex programme


We estimate that this will lead to a cost increase of >£700m over the remaining life of the programme...

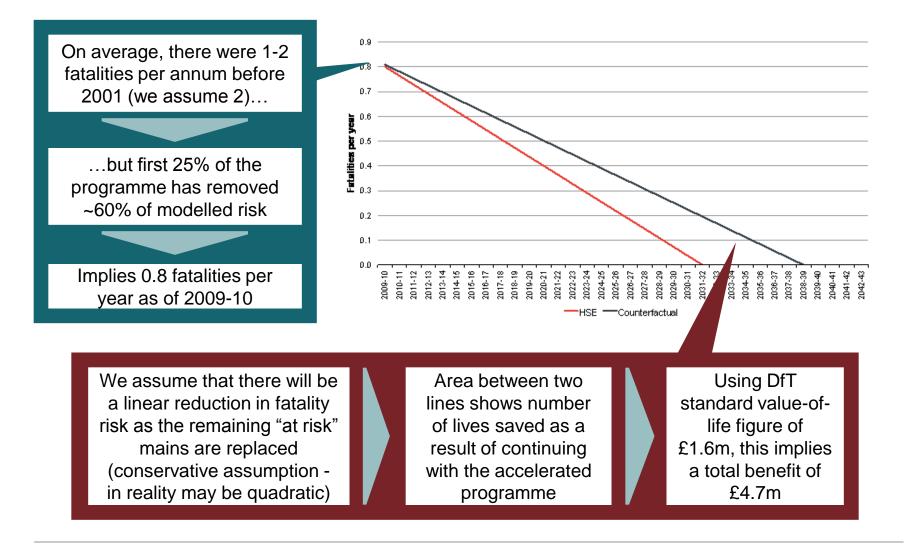

...though we have also studied the sensitivity of this cost estimate to variations in underlying assumptions

...though we have also studied the sensitivity of this cost estimate to variations in underlying assumptions

...though we have also studied the sensitivity of this cost estimate to variations in underlying assumptions



- Context and motivation for the study
- Analysis of costs
- Analysis of benefits
- Annexe (detailed cost methodology)


We have looked at a wide range of benefits associated with the HSE's accelerated programme...

... we consider each of these benefits in turn

We estimate that HSE's accelerated programme will save three more lives


Injuries

Property

2

3

We have used a similar approach to estimate the reduction in serious injuries and damage

The accelerated mains replacement programme is likely to result in a more rapid reduction in shrinkage

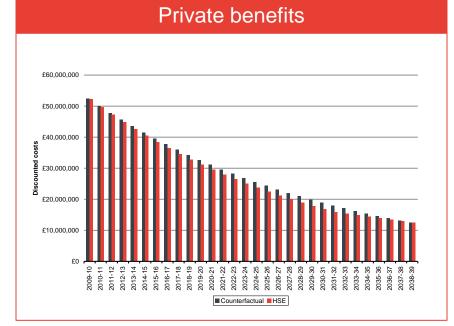
Shrinkage estimates reported in GDPCR1 suggest that the accelerated repex programme will reduce shrinkage by 62 GWh per year

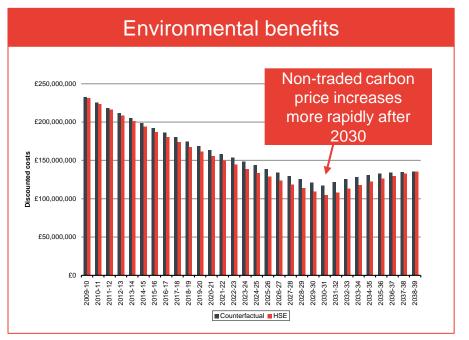
Shrinkage volumes forecast in December 2007 final proposals...

	Shrink	age volume	(GWh)	
	2009-10	2010-11	2011-12	2012-13
LDZ	Total	Total	Total	Total
East Anglia	286	286	286	285
East Midlands	409	409	408	406
North Thames	396	393	390	386
North West	501	488	484	480
West Midlands	403	393	391	388
Yorkshire	296	292	288	283
Northern	234	230	227	224
Scotland	284	278	272	266
South East	445	433	421	409
Southern	303	298	292	286
Wales North	64	61	60	59
Wales South	170	163	157	153
South West	299	292	285	278
	4,090	4,016	3,960	3,904

...do GDNs now have more accurate shrinkage numbers?

Average annual reduction in shrinkage forecast during GDPCR1 = 62 GWh


Extrapolating forward linearly, this implies a ~35% reduction in total shrinkage over the course of the repex programme


Again, this is a conservative assumption. In reality, the forecast reductions in shrinkage during GDPCR1 reflect changes in pressure management as well as repex. Therefore unlikely that the repex programme alone will really reduce shrinkage by as much as 35%

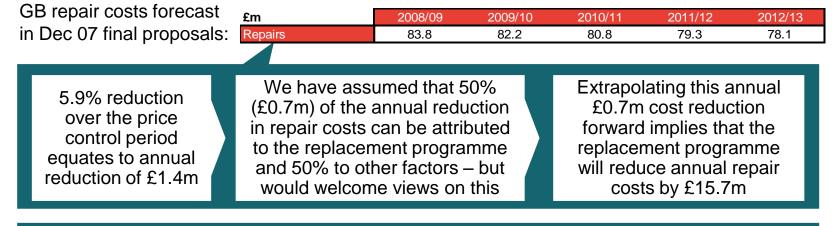
A 35% reduction would in turn imply that shrinkage would fall at the slower rate of 48 GWh per year under the counterfactual programme

Shrinkage

This allows us to estimate both the environmental and private benefits from reducing shrinkage

We have used a day ahead gas price of £13.94/MWh. (*Source: Argus*). We have assumed this price stays constant over time.

Incremental private benefits = £38.8m

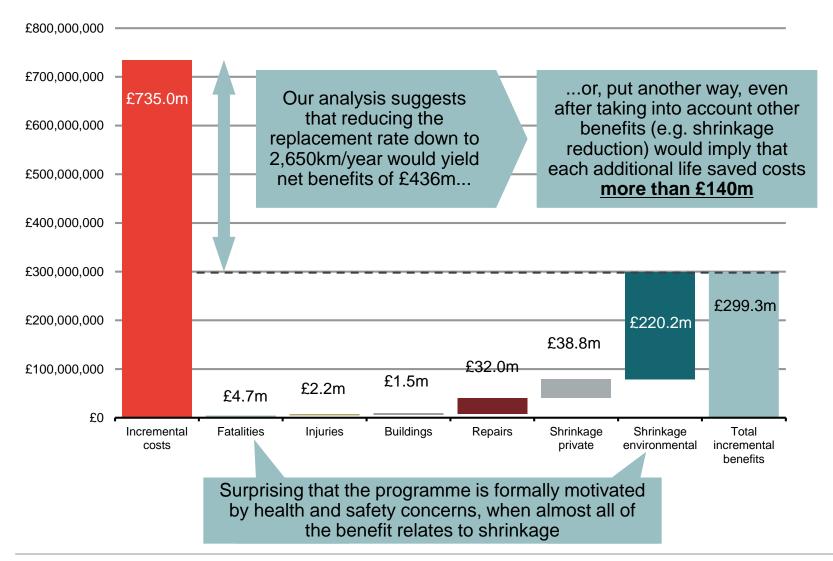

We have assumed that there is 1169tCO2e per GWh of Natural Gas (*Source: GDPCR*). The nontraded carbon price increases from £51/tCo2e to £122/tCO2e over the next 30 years (*Source: DECC*).

Incremental environmental benefits = £220.2m

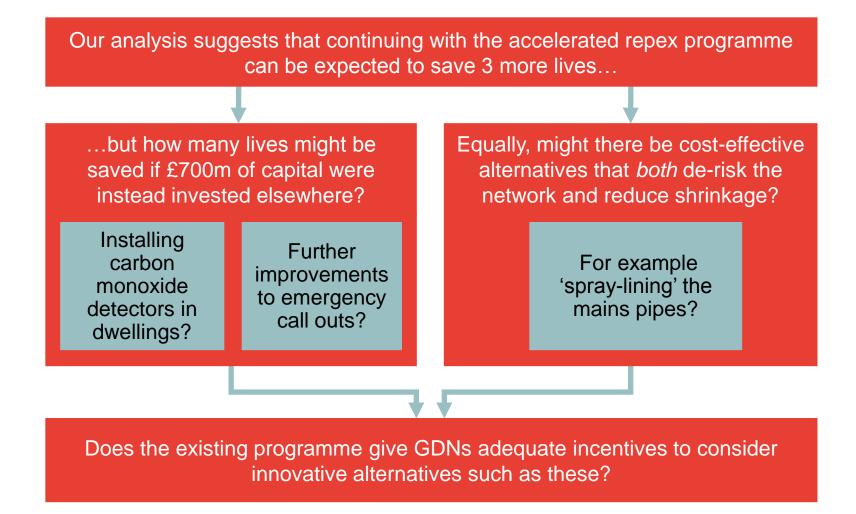
Shrinkage

The accelerated replacement programme could also reduce repair work costs by £32m

Repair work costs reported in GDPCR1 suggest an annual reduction of £1.4m


Note that these figures exclude emergency services provision – might the replacement programme affect this as well?

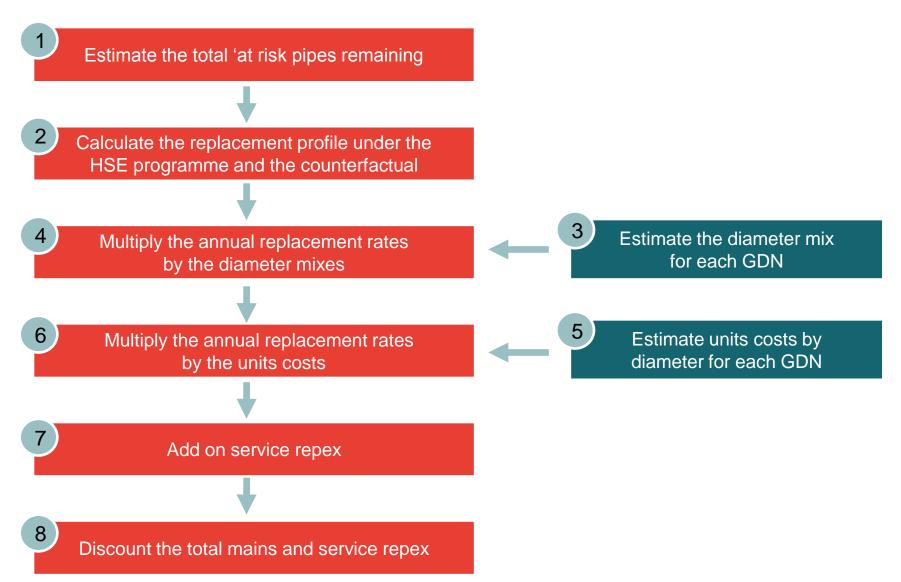
An overall reduction of £15.7m would in turn imply that repair work costs would fall at the slower rate of £0.5m per year under the slower counterfactual programme

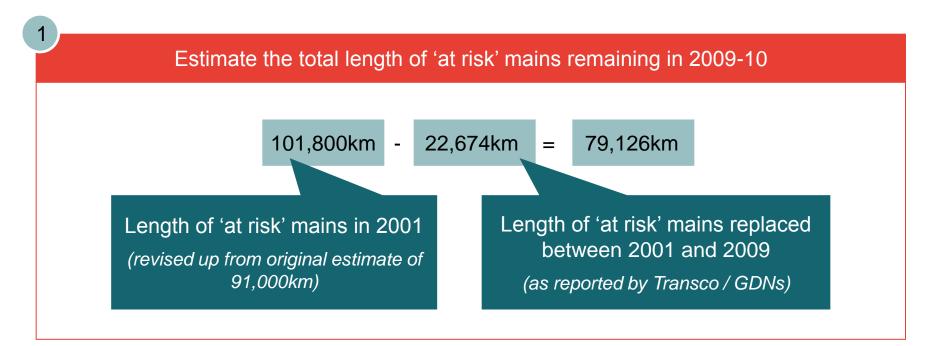

This implies that switching from the accelerated programme to the counterfactual programme would increase total future repair work costs by **£32m** in discounted terms

Repairs

Putting this all together, the incremental costs would appear to be much larger than the incremental benefits

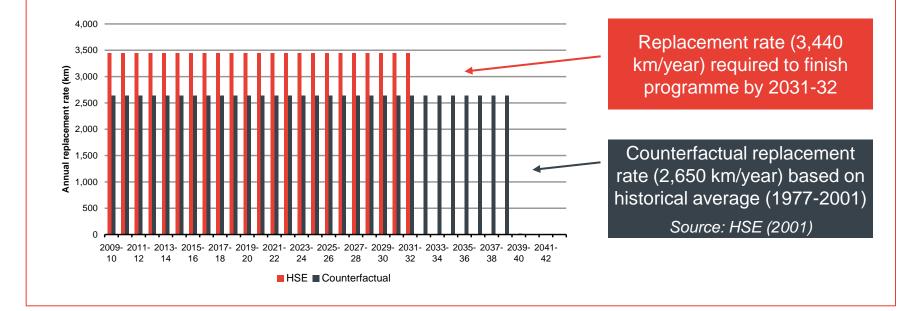
There would therefore appear to be a strong economic case for slowing down the programme




We would welcome comments on our methodology and preliminary findings

Jason Mann	jason.mann@frontier-economics.com +44 (0)20 7031 7055
James Baker	james.baker@frontier-economics.com +44 (0)20 7031 7154
Tom Ovington	tom.ovington@frontier-economics.com +44 (0)20 7031 7179

- Context and motivation for the study
- Analysis of costs
- Analysis of benefits
- Annexe (detailed cost methodology)


Overview of steps

2

Calculate the replacement profiles for the HSE programme and the counterfactual

- In reality, there are a whole range of counterfactual rates that could be used. We consider the impact of varying the counterfactual rate in Slide 9.
- To keep our cost-benefit analysis simple, we have assumed that there is no winding down period at the end of the replacement programme. Introducing a winding down period should not have a significant impact on our estimates.

Estimate the "at risk" diameter mix for each GDN (based on GDPCR 2012-13)

	=3"</th <th>4-5"</th> <th>6-7"</th> <th>8-9"</th> <th>10-12"</th> <th>>12-18"</th> <th>>18-24"</th> <th>>24"</th> <th>Total</th>	4-5"	6-7"	8-9"	10-12"	>12-18"	>18-24"	>24"	Total
EoE	0.7%	9.7%	2.9%	1.2%	1.3%	0.7%	0.3%	0.1%	16.9%
Lon	0.5%	3.7%	1.9%	0.8%	0.8%	0.5%	0.3%	0.2%	8.8%
NW	1.8%	5.9%	2.3%	1.1%	1.0%	0.8%	0.2%	0.1%	13.3%
WM	0.6%	4.4%	1.9%	1.1%	0.7%	0.5%	0.1%	0.0%	9.4%
NoE	1.6%	8.2%	3.0%	0.5%	0.6%	0.4%	0.0%	0.0%	14.2%
Scot	0.9%	3.6%	1.8%	0.6%	0.5%	0.1%	0.1%	0.0%	7.8%
SoE	0.7%	10.5%	4.1%	1.6%	1.2%	0.4%	0.4%	0.1%	19.1%
W&W	1.0%	4.8%	2.1%	1.5%	0.6%	0.3%	0.0%	0.0%	10.4%
Total	7.8%	50.9%	20.0%	8.6%	6.7%	3.8%	1.6%	0.5%	100.0%

Important note: this approach assumes that the same diameter mix will be replaced each year However, in reality, GDNs are prioritising the replacement of small-diameter mains Implies that relying on 2012-13 mix may underestimate the proportion of remaining "at risk" mains that have large diameters

HSE

⁴Multiply the diameter mixes (from step 3) by the overall replacement rates (from step 2)

	=3"</th <th>4-5"</th> <th>6-7"</th> <th>8-9"</th> <th>10-12"</th> <th>>12-18"</th> <th>>18-24"</th> <th>>24"</th> <th>Total</th>	4-5"	6-7"	8-9"	10-12"	>12-18"	>18-24"	>24"	Total
EoE	24	334	99	43	44	24	12	3	583
Lon	18	126	64	29	28	19	10	7	302
NW	62	204	78	39	36	28	8	3	458
WМ	21	151	66	39	25	16	3	2	324
NoE	54	284	102	17	20	13	1	0	490
Scot	31	125	63	22	17	5	5	1	269
SoE	24	360	142	56	40	15	15	4	656
W&W	36	166	74	52	22	11	0	0	359
Total	270	1,750	687	297	232	131	55	19	3,440

This means that W&W will replace 166 kilometres of 4-5 inch pipes each year for the next 23 years =3,440*1.5%

Counterfactual

256 97 157 116 218	76 49 60 50	33 22 30 30	34 22 28 19	18 14 22 12	9 8 6	2 5 2	447 231 351
157 116	60 50	30	28	22	6	-	
116	50		-		-	2	351
		30	19	10	-		
218	70			12	3	1	248
	78	13	15	10	1	0	375
96	48	17	13	4	4	1	206
276	109	43	31	12	12	3	503
127	56	(40)	17	8	0	0	275
			\bigcirc	\frown	\bigcirc	\bigcirc	\bigcirc

5

Estimate unit costs by diameter (from GDCPR)

	=3"</th <th>4-5"</th> <th>6-7"</th> <th>8-9"</th> <th>10-12"</th> <th>>12-18"</th> <th>>18-24"</th> <th>>24"</th> <th></th>	4-5"	6-7"	8-9"	10-12"	>12-18"	>18-24"	>24"	
EoE	£62.3	£68.1	£95.8	£177.1	£247.5	£358.8	£501.5	£618.9	
Lon	£76.5	£83.5	£117.5	£217.3	£303.6	£440.2	£615.3	£759.3	
NW	£62.1	£67.8	£95.4	£176.5	£246.6	£357.6	£499.9	£616.9 🔶	£ per met
WM	£62.8	£68.5	£96.4	£178.4	£249.2	£361.4	£505.1	£623.4	
NoE	£59.8	£65.3	£91.9	£170.0	£237.5	£344.4	£481.3	£594.0	
Scot	£62.5	£68.2	£96.0	£177.6	£248.1	£359.8	£502.8	£620.5	
SoE	£66.4	£72.5	£102.0	£188.8	£263.7	£382.4	£534.5	£659.6	
W&W	£59.3	£64.7	£91.0	£168.4	£235.3	£341.2	£476.9	£588.5	

2008/09 data - we assume annual Real Price Effects of 1.1% for future years (from DPCR5) and no ongoing efficiency improvements

• We have considered the impact of varying the Real Price Effects in Slide 10.

6

Multiply the unit costs (from step 5) by the diameter replacement rates (from step 4)

HSE	•	EoE	Lon	NW	WM	NoE	Scot	SoE	W&W	Total undiscounted repex
	2009-10	£69.2m	£54.7m	£57.1m	£40.3m	£44.0m	£30.0m	£81.0m	£37.4m	£413.7m
Counterfactual		EoE	Lon	NW	WM	NoE	Scot	SoE	W&W	Total undiscounted repex
	2009-10	£53.1m	£41.9m	£43.7m	£30.9m	£33.7m	£23.0m	£62.1m	£28.7m	£317.2m
			alculatio /ear unt have be	til all 'at	risk' pi					

Estimate service repex

Figures for HSE (2009-10)	EoE	Lon	NW	WM	NoE	Scot	SoE	W&W	Total undiscounted repex
Mains repex	£69.2m	£54.7m	£57.1m	£40.3m	£44.0m	£30.0m	£81.0m	£37.4m	£413.7m
Service repex	£30.5m	£24.1m	£25.1m	£17.7m	£19.3m	£13.2m	£35.7m	£16.4m	£182.0m
			_					_	£595.7m

A large proportion of service repex is closely linked to mains replacement (<i>Efficiency case for</i> <i>carrying out mains and</i> <i>services repex</i> <i>simultaneously</i>)	Therefore follows that accelerating the mains replacement programme will also accelerate service repex		Last price control review forecast that total service repex would be 44% of the size of mains repex			Our model therefore adds 44% onto total mains repex to account for service repex
--	--	--	--	--	--	---

• We have considered the impact of varying the ratio of service repex to mains repex in Slide 11. We still have a few outstanding questions that we need to consider:

- Some service repex is carried out independently following gas escapes is this material?
- Is service repex more closely associated with smaller diameter mains? If so, will changes in the diameter mix being replaced lead to changes in the ratio of service repex to mains repex over time?

8

Apply discount factor to identify present value of each year's total cost

HSE programme repex

Figure for 2009-10	EoE	Lon	NW	WM	NoE	Scot	SoE	W&W	Total undiscounted repex	Total discounted repex
Mains repex	£69.2m	£54.7m	£57.1m	£40.3m	£44.0m	£30.0m	£81.0m	£37.4m	£413.7m	£399.7m
Service repex	£30.5m	£24.1m	£25.1m	£17.7m	£19.3m	£13.2m	£35.7m	£16.4m	£182.0m	£175.9m
		-							£595.7m	£575.6m

Counterfactual programme repex

Figure for 2009-10	EoE	Lon	NW	WM	NoE	Scot	SoE	W&W	Total undiscounted repex	Total discounted repex
Mains repex	£53.1m	£41.9m	£43.7m	£30.9m	£33.7m	£23.0m	£62.1m	£28.7m	£317.2m	£306.4m
Service repex	£23.4m	£18.5m	£19.2m	£13.6m	£14.8m	£10.1m	£27.3m	£12.6m	£139.6m	£134.8m
									£456.7m	£441.3m

We have assumed a discount rate of 3.5%, as the Green Book recommends

frontier economics

Frontier Economics Limited in Europe is a member of the Frontier Economics network, which consists of separate companies based in Europe (Brussels, Cologne, London and Madrid) and Australia (Melbourne & Sydney). The companies are independently owned, and legal commitments entered into by any one company do not impose any obligations on other companies in the network. All views expressed in this document are the views of Frontier Economics Limited.

FRONTIER ECONOMICS EUROPE LTD. BRUSSELS | COLOGNE | LONDON | MADRID

Frontier Economics Ltd, 71 High Holborn, London, WC1V 6DA Tel. +44 (0)20 7031 7000 Fax. +44 (0)20 7031 7001 www.frontier-economics.com