

Energy Networks Association Gas Futures Group

Paul Rogers Chair of the ENA Gas Futures Group 24 November 2010

Date: 24 November 2010

Client: Energy Networks Association

Energy Networks Association Gas Futures Group

- ENA Gas Futures Group established in Oct 2009
 - to consider the future of gas transmission and distribution networks
 - the group's first objective was to gain an understanding, and conduct appropriate analysis, to determine potential gas supply / demand scenarios
 - scenario work to inform stakeholders, including Customers, Ofgem and Government in line with principles developed by Ofgem under the RPI-X@20 Review
- Membership:
 - National Grid Gas Transmission and Distribution, Northern Gas Networks, Scotia Gas Networks, Wales and West Utilities and Inexus
- Redpoint commissioned to develop future gas scenarios to 2050 which meet government emission targets
- Final Report launched by Energy Minister Charles Hendry MP on 15 November 2010

Key messages

- There are credible and robust scenarios in which gas could play a major ongoing role in the GB energy mix while meeting both 2020 and 2050 environmental targets, incorporating:
 - deployment of CCS, allowing transmission-delivered gas to maintain its share of generation
 - biomethane, together with roll-out of district heating and / or 'dual fuel' systems, allowing distribution-delivered gas to maintain a significant role in heating
- Pathways with ongoing gas use could offer a cost-effective solution for a low carbon transition relative to those with higher electrification
- Gas is also a key transition fuel, and in 2050 can enhance diversity of energy supply and provide additional flexibility with respect to system balancing

- There is significant value in retaining the option for a high gas future, given the level of uncertainty relating to technology development and costs across sectors
- Keeping this option open via maintenance of the existing gas networks is relatively inexpensive in comparison to other costs associated with system evolution

Scenario matrix summary table

		DIMENSION 2: Commercialisation of Electricity and Heat Storage Technologies	
		Low / Slow	High / Rapid
		GREEN GAS	STORAGE SOLUTION
DIMENSION I: Commercialisation of Carbon Capture and Storage	High / Rapid	Transmission-delivered gas 2050: HIGH - gas + CCS -some unabated gas for balancing Distribution-delivered gas 2050: HIGH - 'dual fuel' world for domestic heating - biomethane injection - district heating + CCS - some use of CNG in transport	Transmission-delivered gas 2050: HIGH - gas + CCS - small amount of unabated gas -additional balancing via electricity storage and DSR Distribution-delivered gas 2050: LOW - heating and transport largely electrified - heat storage used to balance seasonal heat
	Low / Slow	GAS VERSATILITY Transmission-delivered gas 2050: LOW - renewables / nuclear dominate -Some unabated gas for balancing Distribution-delivered gas 2050: MEDIUM - biomethane injection at max potential - some use of CNG in transport	ELECTRICAL REVOLUTION Transmission-delivered gas 2050: NONE - renewables / nuclear dominate -balancing via electricity storage, flexible nuclear, interconnection and DSR Distribution-delivered gas 2050: NONE - heating and transport largely electrified - heat storage used to balance seasonal heat

Annual total carbon dioxide emissions

All scenarios meet 2050 carbon targets based on a 90% cut in emissions Electrical Revolution and Storage Solution have lowest emissions cumulatively – Green Gas has the highest

Annual gas demand by scenario

Four scenarios capture a broad range of trajectories of future gas utilisation, from slight increase above today's level down to zero by 2050

Installed generation capacity - 2050

Significant increases in capacity in all scenarios Installed capacity in Electrical Revolution almost double Green Gas by 2050

NPV of system costs – total (baseline)

Total system costs \sim £700bn higher in ER relative to GG Equates to \sim £20k per household or £10k per person

Annual network costs by scenario

Costs of electricity networks rise in all scenarios, but particularly in ER due to increased demand Costs of gas T&D fall due to limited requirement for new capex even in high gas scenarios

Includes capex, opex, connections, business rates, and decommissioning costs