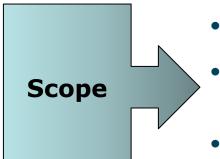


Demand Side Response Discussion Paper


Demand Side Working Group 7 September 2010

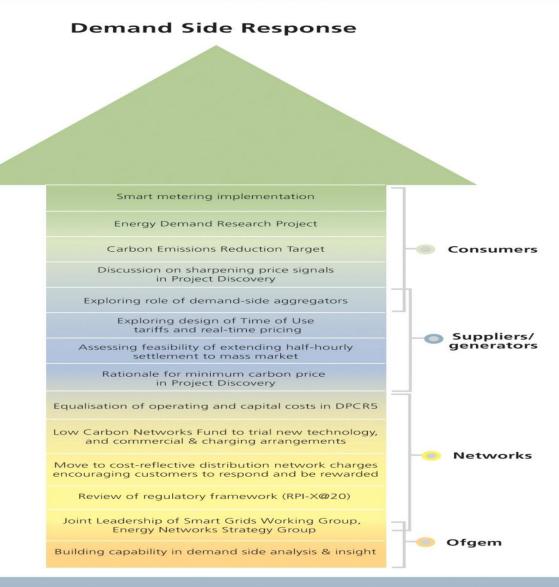
Sabreena Juneja & Jamie Black

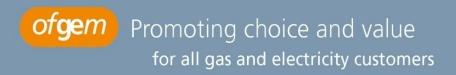
Context and Scope

- Role of DSR highlighted in Discovery, Energy Market Assessment, Smart Smart Grid Roadmap and Low Carbon Transition Plan.
- DSR can help facilitate a more dynamic relationship between supply and demand.

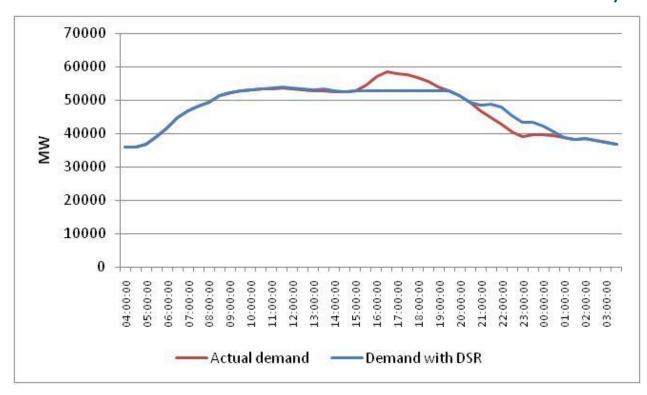
- Electricity sector and shifting demand.
- Reviewed current response in GB, identified issues to increase DSR and analysed benefits and costs.
- Focus of today's presentation is on latter two.

Issues we need to consider to increase DSR




- sharpening short-term price signals for industrial consumers.
- addressing limited financial incentives to shift consumption.
- improving awareness for domestic and small business consumers.
- overcoming difficulty in changing consumer
 behaviour and increasing discretionary demand through emerging automated technologies.

- need for DSR from consumers to be firm and aggregated.
- need for a more active role for networks.
- addressing barriers for suppliers in offering products.


Ofgem initiatives to facilitate Demand Side Response

Benefits and Costs

Estimated impact of encouraging consumers to shift 5-10% peak electricity use to earlier and later in the day:

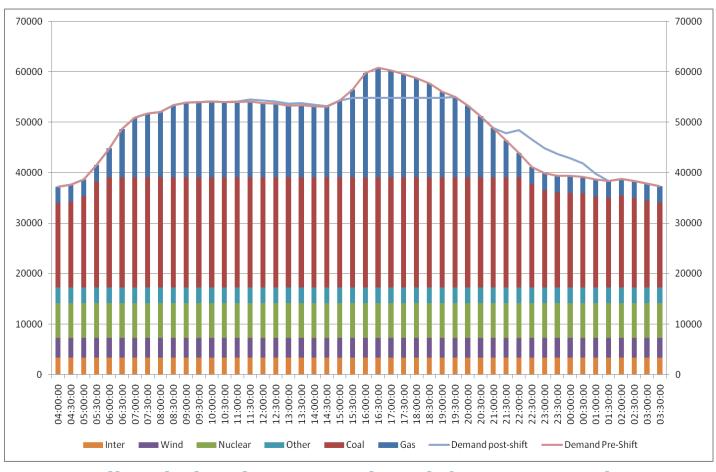
Costs: largely one-off and include technology and infrastructure costs as well as costs and inconvenience of changing consumption patterns.

Benefits: estimates of daily wholesale cost and carbon savings and annual capital costs savings for networks and new generation and qualitatively discussed impact on security of supply.

Assumptions

- 1. Enabling technologies to facilitate DSR and tariffs that encourage DSR are available.
- 2. No net change in electricity demand as a result of DSR.
- 3. Used demand profiles for 2 winter days and 1 autumn day.
- 4. Potential for around 5 to 10% of total peak demand to be shifted within day.

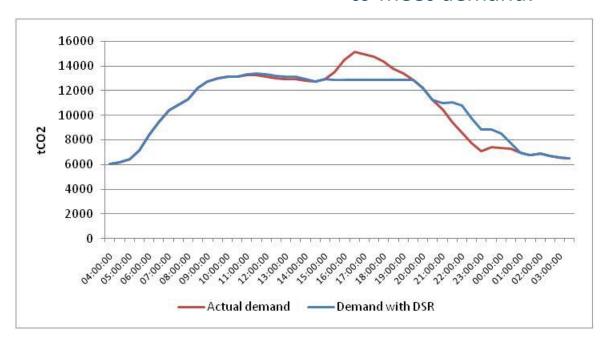
Customer	% peak demand	DSR potential	% peak demand with DSR	Time period	
				From	То
Interruptible I&C	3.8%		3.8%		
Firm I&C	16.0%	-5.0%	15.2%	15:30- 19:30	11:00- 15:00
SME	30.2%	-5.0%	28.7%	15:30- 19:30	21:00- 01:00
Domestic	50.0%	-5% to -15.0%	42.5% to 47.5%	15:30- 19:30	21:00- 01:00
Total	100.0%		90.2% to 95.2%		


Wholesale cost savings

Wholesale cost savings arise due to replacing higher cost peak generation by lower cost off-peak generation- combination of short run cost savings and capital cost savings.

Wholesale prices and daily demand profile 7/01/10

Modelling wholesale cost savings



- Plant stacked in order of SRMC
- Order may change as commodity prices change
- Capital cost savings accounted for separately

Daily wholesale cost savings b/w £0.4m and £1.7m, and annual capital cost savings b/w £129m and £536m.

Change in daily carbon emissions

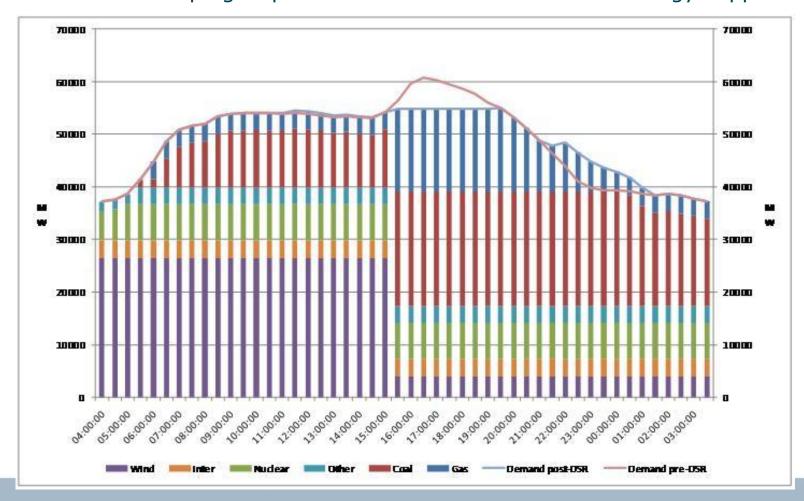
Changes in carbon emissions depend on carbon intensity of generation plant used to meet demand.

There may be a net increase or decrease but if carbon is priced appropriately DSR can lead to CO2 savings.

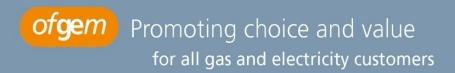
Daily carbon savings (baseline scenario): -850tCO2 to 2200tCO2

Daily carbon savings (sensitivity analysis: decrease gas price, increase carbon price): 800tCO2 to 2550tCO2

Annual reduction in network costs


DSR can be used to defer network investment such as reinforcement.

Distribution Network (2007-08 prices)				
Annual average general reinforcement investment (2010-15)	£275m			
Potential annual savings with a 10% reduction in peak demand	£27.5m			
Potential annual savings with a 5% reduction in peak demand	£13.8m			


- These estimates are conservative:
 - assumes a 1:1 relationship between reduced peak demand and investment; and
 - does not include investment for connections of generation plants.
- We might also expect some transmission network savings.

Security of supply

DSR will become increasingly valuable as variable generation increases, helping to promote secure and sustainable energy supplies.

DSR in a potential 2020 generation mix – managing wind variability

DSR discussion paper:

http://www.ofgem.gov.uk/Pages/MoreInformation.aspx? docid=39&refer=Sustainability

Thanks for listening

Any Questions?

Promoting choice and value for all gas and electricity customers