System Operator Review - NGET

Malcolm Arthur

Contents

- Incentive history
- Cost drivers
- Future incentives

Transmission: UK electricity transmission

- GBSO as of April 2005
- Manage the security and quality of electricity supply in specific timescales
- Balance generation and demand economically & efficiently
- Operation of the Balancing Mechanism after Gate Closure
- Provision of Information to the market

Security & Quality of Supply

- System security
 - Securing the network against faults
 - Voltage management
 - Resolve Transmission Constraints
- Balancing
 - Forecasting Demand
 - Match generation and demand in real time
 - Procure 'Reserve' and Frequency Response
 - Forward trading and BM actions
- Information provision

Incentive history

- Incentives developed in 1994 due to increasing operation costs
- Incentive scheme revised for NETA implementation
- Incentive aimed at controlling costs and encouraging investment
- Scheme sets target costs on an annual basis

SO External Incentive Scheme History

Cost Drivers

Key Incentivised Costs

Current main cost areas

- Constraints
- Reserve
- Frequency Response

What will these high costs be in the future . . .?

- E.g. constraints
- Uncertainty with volumes and prices into the future
- Investing the transmission system to increase capacity across critical boundaries
- However, volume of new generator connections behind these boundaries are developing at a faster rate

Constraints - Cheviot capability

Future Cost Drivers

- Transmission investment
- Wind
- LCPD
- Interaction with gas market
- Transmission Access
- Cash-out review
- Interaction with European markets
- Shocks
 - Market Price
 - Large generator shut downs (type faults)
- Framework changes

Future Cost Drivers – e.g. Wind

Wind

- Interaction with:
 - Constraints
 - Dependant on connection location
 - Reserve
 - Expected increase in reserve requirements
 - Response
 - Potential increase in dynamic requirements
 - Demand forecast
 - Embedded wind generation is seen as demand volatility
- Policy changes

Future Cost Drivers – e.g. Wind

Risk Profile of the SO External Costs

- Asymmetric risk profile
- Events outside the control of the SO can significantly effect costs
 - Market Shocks
 - Power price changes
 - Weather e.g. cold winter
- Incentive arrangements need to work in an environment of increased uncontrollable risks
 - Recognised in target
 - Income adjusting events IAEs
 - Rarely used and have historically been notified as risks
 - Target adjusters

Risk mitigation - target adjuster

Wind target adjuster

 As the scale of wind growth remains uncertain, could develop driver that links wind to target costs

Also consider

- Power price
- Transmission reinforcement
- Other

Cost Risk Profile

Risk Profile and Target Setting

- Forecast cost range and shape of the distribution of costs is as important as the mean forecast value
- Distribution of costs is key to the development of a full set of incentive scheme parameters:
 - Target
 - Deadband
 - Sharing factors
 - Caps/collars
 - Target adjusters

Future Incentive Arrangements that Meet Industry and Consumer Priorities

Industry Priorities

What are the major industry/consumer concerns?

- Lowest possible efficient BSUoS costs?
 - Lowest overall efficient industry costs of balancing, BSUoS, Imbalance charges etc.
 - Maintain current security / service standards?
- Concern with pollution of imbalance prices?
 - Cash out review
- Facilitation of transmission system access?
- Improved information provision?
 - Implementation costs
- Other?...

 SO external cost incentives should facilitate achievement of these....

Does the current incentive framework meet this?

Current Incentive arrangements

Managing external costs

- The efficiency challenge:
 - Current costs:
 - As NETA/BETTA balancing costs mature, bigger investments needed to deliver efficiencies.
 - Future cost drivers, e.g. Wind:
 - Gradual cost growth may be mitigated through additional investment
- Investments in efficiency through:
 - Staff
 - Short term e.g. development project Reserve Review
 - Permanent increase frequency response analysis
 - Systems
 - Real time optimisation
 - Development of new analysis tools
 - Information / data analysis

Internal / External Incentive Trade Offs

Internal / External Incentive trade offs

- Current framework drives investment / innovation with 1 year payback:
 - Year on year schemes
 - Balanced internal and external incentives
- Greater payback on external performance needed to fund larger investments
 - As in the previous example, major investment in, for example, frequency response optimisation..
 - Possible decrease costs by £1m £5m/annum
 - Cost in excess of £10m to develop and implement

SO Review

Summary

- A number of challenges, both in terms of current costs and future cost drivers
- Can meet these challenges without major change to SO role
- Support the development of incentive framework that meets the priorities for industry and consumers
 - Efficient and economic BSUoS/overall market costs of balancing delivered through facilitation of SO investment
 - Greater investment support the consideration of longer term incentives – though some challenges to overcome

