

Review of Distribution Network Design Performance Criteria

- **Project Summary Presentation**
- **David Porter**
- **Goran Strbac**
- 14 September 2007

Contents

- 1. Aims and objectives
- 2. Requirement for planning standards
- 3. Critical network loadings
- 4. Construction outages
- 5. Distributed Generation
- 6. Definitions and interfaces
- 7. Interruption frequency
- 8. Lifecycle costing
- 9. Recommendations

Aims and objectives

Imperial College London

Review the strengths & limitations of network planning, design and performance criteria

Key Task Areas

- 1. Summarise the methodology and assumptions underpinning ER P2/6
- 2. Provide a detailed commentary on the methodology and data focusing on:
 - their appropriateness to today's distribution systems
 - the quantitative impact of any weaknesses identified
 - issues that may become material over the next 10-20 years
- 3. Comment on the strength of the case for and scope of a review of ER P2/6.
- 4. Propose options for a new planning standard and development paths

Are the existing arrangements appropriate for the future?

ER P2/6 Table 1 requirements London College London Table 1 concisely captures the minimum planning requirement

		Minimum Demand to be met after	
Class of Supply	Range of Group Demand	First Circuit Outage	Second Circuit Outage
Α	Upto1MW	In repair time (Group Demand)	N IL
В	Over 1 MW to 12 MW	 (a) W ithin 3 hours (Group Demand minus 1 M W) (b) In repair time (Group Demand) 	N IL
С	Over 12 MW to 60 MW	 (a) W ithin 15 m inutes (Smaller of Group Demand minus 12 M W and 2/3 Group Demand) (b) W ithin 3 hours (Group Demand) 	N IL
D	Over 60 to 300 MW	 (a) Immediately (Group Demand minus up to 20 MW (Automatically disconnected)) (b) Within 3 hours (Group Demand) 	 (c) Within 3 hours (For Group Demands greater than 100 MW, smaller of Group Demand minus 100 MW and 1/3 Group Demand) (d) Within time to restore arranged outage (Group Demand)
Е	O ver 300 to 1500 M W	(a) Immediately (Group Demand)	 (b)Immediately (All customers at 2/3 Group Demand) (c)Within time to restore arranged outage (Group Demand)
F	Over 1500 MW	CEGB Planning Memorandum PLM-SP2 Scottish Board Security Standard NSP 366	

Network design philosophy

Imperial College

Retaining a planning standard ^{Imperial College} It is recommended that a planning standard be retained supplemented by incentives

Features of the planning standard

- Provides a baseline planning reference for DNOs
- Allows increased security provision where justifiable
- Accommodates a variety of network designs.
- Delivers adequate network security for the largest demand groups
- Minimises the impact of low frequency/high impact events

Incentive based approaches

- Useful for improving performance for the smaller demand groups
- Well suited to high frequency/low impact network disturbances
- Cost effective to date implementation of quick wins but where next?
- Driven investment in secondary infrastructure
- Insufficient outage cost and failure distribution data to extend to EHV

Planning standard driving EHV design. IIS driving HV design

кема⋞

Critical network loadings

The timing of peak loadings is changing with convergence between seasonal demands

Peak loading considerations

- ER P2/5 originally based upon the notion of winter peaking
- Summer load growth and peaking air conditioning loads in urban environments
- Reductions in network capacity with rising ambient temperature and loading
- Outage scheduling assumptions rely on significant differences between seasonal demand
- Summer/winter demand convergence can constrain circuit outage windows
- The requirement to restore 2/3 demand following SCO perhaps less relevant now than in 1970s
- Particularly true for extended (construction) circuit outages

Requirement for more sophistication during consideration of critical loading conditions

Construction outage risks London College London Extended EHV outages potentially increase network security risk for many customers

Risks associated with extended network outages

- ER P2/6 does not differentiate between maintenance and construction outages
- Short 'maintenance' outages assumed with constant asset performance
- Historically, reduced summer loading provided capacity headroom for outages
- Outage scheduling becoming more challenging due to increased asset utilisation, convergence of seasonal load profile and reduced capacity headroom
- Partial supply restoration criteria for Demand Groups >100 MW does not adequately protect customers – *"within time to restore planned outage"*
- Mitigation at the discretion of the DNO and the risk awareness/attitude. Requirement to recognise the cost of mitigation
- Dutch Grid Code specifies onerous mitigation criteria for EHV outages >6 hours

Recognise construction outages, amend SCO criteria re-partial restorations, include mitigation obligations and cost

ER P2/6 restoration requirements London Significant customer risk associated with long outages for Demand Groups >100 MW

Distributed generation London College Security from DG limited. Connection criteria not essential. Bulk transfer capability missing!

Security contributions

- GB experience limited
- GB framework enables
- DG deployment slow
- DG not rewarded for security contributions
- Regulatory & legislative barriers
- Dutch pay generators for outage contribution (not wind)

Connection criteria

- Stand alone DG unlikely to impact supply security
- Risk diversified across large DG groups
- Connection reliability less critical for security
- Connection security a commercial issue for DG generators
- Competition and DNO negotiations address

Bulk energy transfer

- Offshore wind transfer
- DNO 'sandwich'
- SQSS addresses on & offshore
- ER P2/6 silent for DG
- Not being developed in Offshore Codes
- Significant omission from commercial framework

Definitions and interfaces London College Requirement to clarify application to remove ambiguities and inconsistencies

Application clarifications

Group Demand & Transfer Capacity

- ER P2/6 requirements dependent on different Group Demand levels
- For radial networks, definitions are implicit
- For meshed networks, Group Demands require local knowledge
- Possibility that compliance assessments differ across DNOs

TSO interface

- TSO actions and requirements can impact network security for DNOs
- Requirements to provide transfer capacity for TSO
- GSP reconfiguration during asset replacement can impact CI/CML
- Helpful to align transmission and distribution terminology
- Benefits in agreeing interface procedures to mitigate risks to customers

Supply interruption frequency London College Design and performance framework silent on interruption frequency to individual customers

Interruption frequency considerations

- ACE 51 contained guidance on interruption frequency not transferred to ER P2/5
- CI/CMLs do not provide protection for individual customers as these are averaged system indices
- Maximum individual customer interruption frequencies could be inserted in the network design and performance framework.
- Does not necessarily need to be a feature in a future planning standard
- could form part of an enhanced Guaranteed Standards framework or incentive arrangement
- Further modelling required to determine appropriate values.

Inclusion of maximum interruption frequency guidance would enhance network planning and design for customers

Variations in CI/CML performance London CI/CMLs provide System performance insights rather than customer Load Point views

CI/CML Analysis

- Sample size 100 feeder, expected average CI=95, CML=98. However...
- Large variations in individual customer interruptions 10<CI<500+
- Similarly, large variations in interruption duration, 10<CML<500+
- Average CI/CML statistics useful to drive average network performance
- CI/CML do not address maximum customer interruption frequency well

Lifecycle costing Lifecycle costing Lifecycle costing Lifecycle costing ER P2/6 provides no guidance regarding the costs of network design options

Linkages between network design, cost and performance

- Some DNOs have pursued low capital cost design solutions since privatisation
- Initial cost does not guarantee optimised lifecycle costing or operational flexibility
- Concern expressed regarding 3rd party operators installing assets to the minimum standard, exposing customers to reduced security and DNOs to IIS penalties
- GB distribution losses higher than Western European average
- Loss optimisation analysis reveals 'over-sized' assets can be advantageous to reduce lifecycle costs, particularly LV and HV cables
- Additional benefits for DG integration of 'robust' network specification and consistent with CO2 reduction targets

Least cost designs seldom optimise security, losses and DG

Recommendations

In absence of fundamental changes in system usage, an evolutionary approach is proposed

- Retain a planning framework with complementary incentive arrangements
- Evaluate further inclusion of interruption frequency guidance in planning standard
- Revise outage classification provisions: Differentiate construction outages
- Insert risk assessment and mitigation guidance regarding long-duration outages, consider Dutch approach, and amend Second Circuit Outage requirements
- Revise and update critical load provisions
- Clarify key definitions to assist compliance assessments
- Clarify transmission interface requirements to protect customer interests
- Encourage adoption of lifecycle costing techniques
- Insert guidance regarding common mode failure risk
- Insert provisions regarding requirements to transport energy from generation