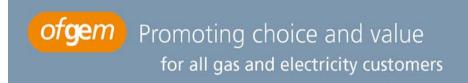


Cash-out Review Meeting 2


Philip Davies
Director of GB Markets
26 September 2007
2.30-5.00pm

Agenda

- Introductions
- Ofgem presentation
 - Objectives of Cash-out Review
 - Why cash-out is important
 - Key insights
- Presentation from Professor Stephen Littlechild
 - Balancing market concept
- Moving forward
- Discussion and debate

Purpose

- This presentation summarises Ofgem's current thinking on the Cash-out Review
- It is intended to build on the extensive analysis which has already been undertaken as part of Modification P211 and P212 assessment processes
- We have invited Stephen Littlechild to expand on the concept of a "balancing market" raised in his March paper on Electricity Cashout Arrangements
- Our intention is to seek industry feedback and generate further discussion

Objectives of Cash-out Review

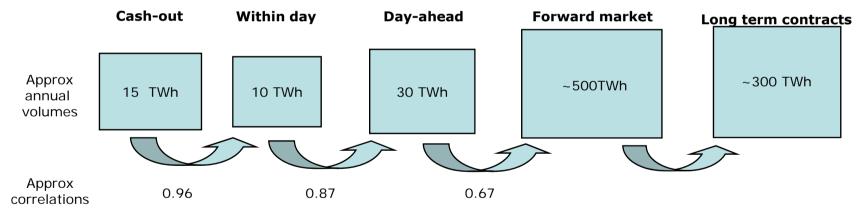
 Cash-out Review launched in February 2007 to assess how well the current arrangements are meeting the following objectives:

Simple and transparent

Provide appropriate signals

Non-discriminatory

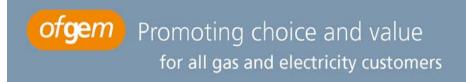
Promote competition in the electricity market



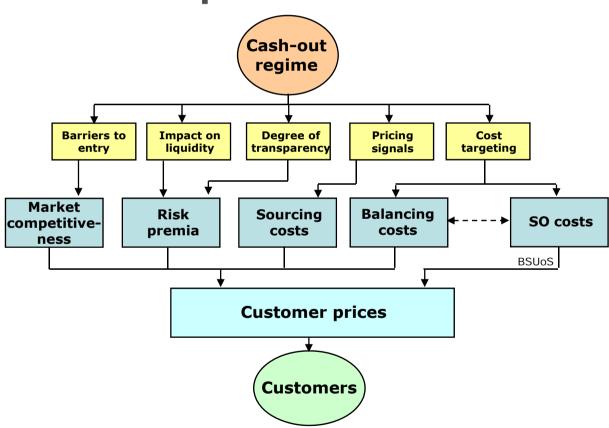
Why cash-out is important

Why cash-out is important 1. Interactions with forward markets

 Although volumes through the cash-out regime are relatively small there are strong correlations with exchange and bilateral markets


Sources: Elexon, Heren, APX, internal analysis

Greater transparency in cash-out should promote ST and LT liquidity


Why cash-out is important 2. Promotion of competition

- New entrants are likely to be exposed to a greater extent to imbalance charges
- In the case of new entrant suppliers due to:
 - Lack of historic consumption data for forecasting
 - Low diversification benefits
 - Less mature forecasting processes
- In the case of new entrant small generators due to:
 - Less predictable/controllable output
 - Low diversification benefits
- An inefficient cash-out regime may act to deter these new entrants

The cash-out regime should not act as a barrier to entry

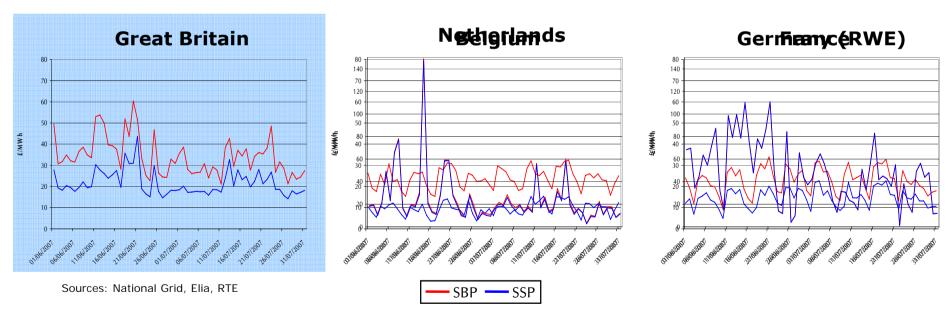
Why cash-out is important 3. Impact on customers

Cash-out has a significant (direct and indirect) impact on customers

Why cash-out is important 4. Adapting to changing generation mix

- Cost of balancing likely to evolve with the changing generation mix/capacity margin:
 - 17 GW of nuclear and coal/oil plant closures over next ten years
 - Reduced reliability of plant as they approach end of operational life
 - Increased intermittency with growing proportion of wind generation
 - 11 GW of "opted-out" coal and oil plant operating under constraints of LCPD which may affect bidding behaviour in Balancing Mechanism
 - Potential growth in CHP and distributed generation
- Growth of renewables will have implications for how constraints are managed with knock-on impacts for cash-out

Cash out should send the right long term signals for investment


Why cash-out is important 5. Interactions with European markets

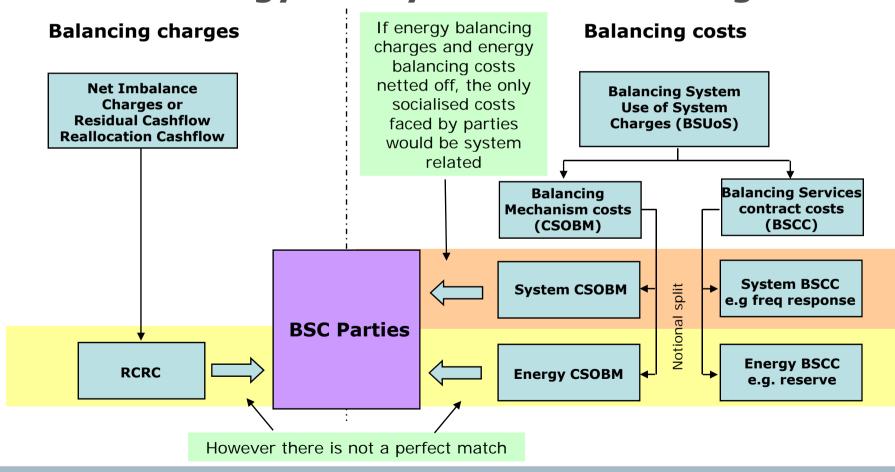
- GB market will become increasingly interconnected over the coming years with the addition of two further interconnectors
 - BritNed (2010)
 - New Irish interconnector (~2012)
- Ergeg initiatives on good practices in energy balancing market integration
- Important that:
 - Trading arrangements promote efficient patterns of trade across interconnections
 - There are no perverse incentives caused by differences in cash-out price signals with connected markets

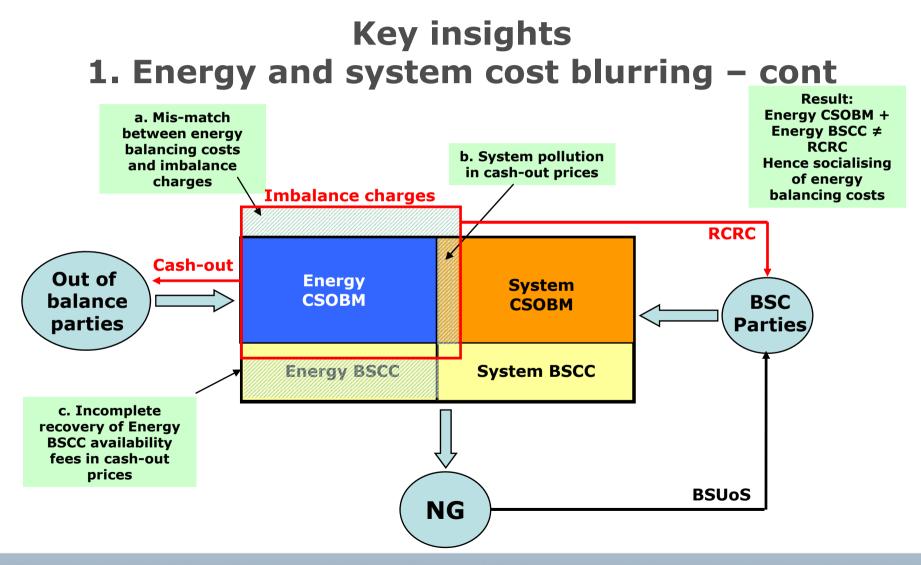
Important that GB market evolves to capture the opportunities created by a more integrated European electricity market

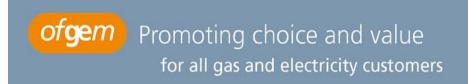
Why cash-out is important Interaction with European markets – cont.

Daily average cash-out prices – June-July 2007

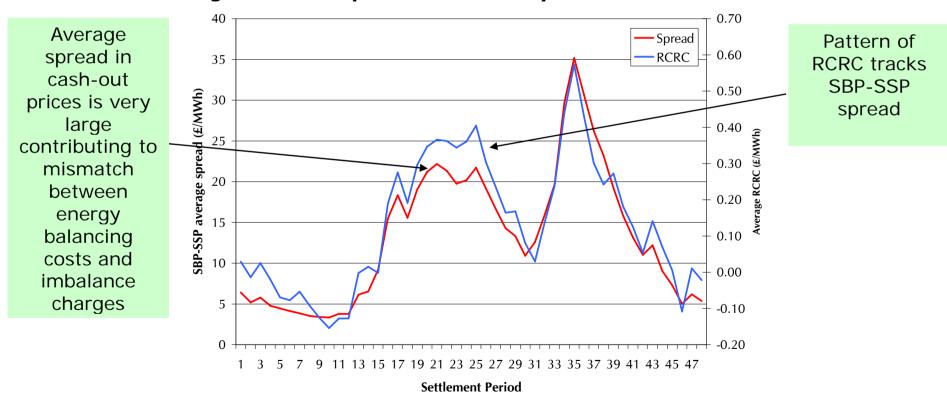
Cash-out prices very different from the single marginal approaches adopted in Netherlands and Germany




Key insights

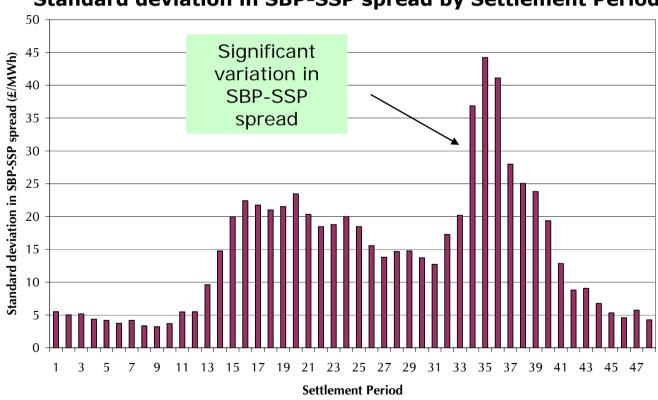

- 1. Blurring of energy and system balancing costs across cash-out and BSUoS leads to inefficient cost targeting and lower accountability for SO
 - a. Large and unpredictable spread between SBP and SSP
 - b. System pollution in cash-out prices
 - c. Incomplete recovery of BSAD costs in cash-out
- 2. Smaller players may be disadvantaged by large spread between SBP and SSP and by system pollution?
- 3. Post gate-closure uncertainty is significant, diminishing cost reflectivity of prices set ex-ante at gate closure
- 4. Short term liquidity in the GB electricity market is lower as a proportion of throughput than many other European markets
- 5. Other markets have successfully separated out energy and system actions at the point of execution

Key insights 1. Energy and system cost blurring



Key insights 1a. Large SBP-SSP spread

Average SBP-SSP Spread and RCRC by Settlement Period

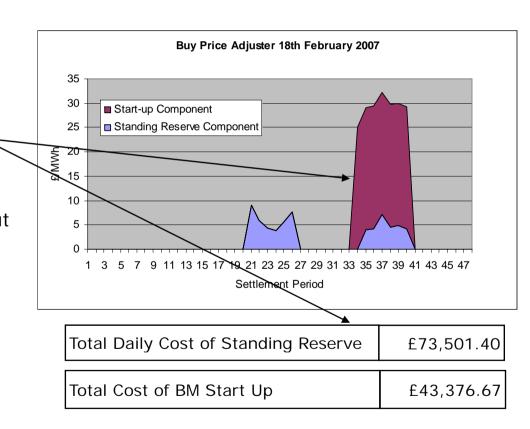


Note: Analysis covers 2 Nov 2006 (post-P205) to 31 July 2007

Key insights 1a. Unpredictable SBP-SSP spread

Standard deviation in SBP-SSP spread by Settlement Period

Note: Analysis covers 2 Nov 2006 (post-P205) to 31 July 2007

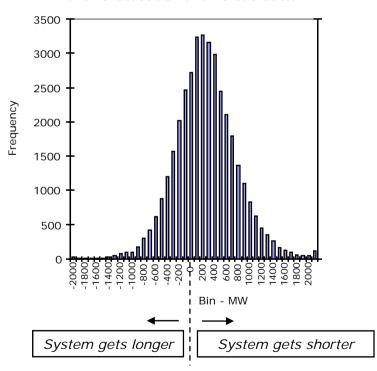

Key insights 1b. System pollution in cash-out prices

- In the first Cash-out Review meeting in March National Grid demonstrated that energy prices could be polluted by:
 - Resolving constraints
 - Intra-half hour actions
 - Reserve creation
 - Frequency response
- Initial analysis of November data suggested that system pollution was having the following effect relative to an unconstrained energy price:
 - Up to 9% average increase in SBP
 - Up to 7% average decrease in SSP
- Subsequent analysis by EdF provided further evidence of nonenergy actions influencing cash-out price in some periods

Key insights 1c. Incomplete recovery of BSAD costs in cash-out

- 1. Example: Cost of Standing Reserve greater than Start Up yet less effect on cash-out via the BPA (18 Feb 2007)
- 2. Our analysis suggests that about 10-20% of the energy related Balancing Services availability fees (£100m) in 2006/07 were recovered through cash-out the rest was socialised

What proportion of these costs should out-of-balance Parties be exposed to?


Key insights 2. Smaller players disadvantaged?

- Independent suppliers and renewables/distributed generators typically will have greater forecast errors than larger players:
 - Lack of historic consumption data
 - Less mature forecasting processes
 - Less portfolio diversification
 - Less predictable/controllable generation output
- To the extent that cash-out prices are not reflective of pure energy balancing costs smaller players may be disproportionately affected
- System pollution and the large spreads in cash-out prices may be disadvantaging smaller players
- Conversely, are these players making the appropriate contribution to the costs of reserve?

Key insights 3. Post-gate closure uncertainty

- Magnitude of post-gate closure changes is significant
- Limits how cost reflective a
 main cash-out price set ex-ante
 at 1.5 hrs before the settlement
 period can be
- Also brings in to question
 whether the current *reverse* price is itself cost reflective i.e.
 can the large spread in SBP-SSP
 be justified based on information
 available to Parties at gate
 closure?

Combined difference between notified generation and forecast demand versus outturn

Key insights 4. Low short term liquidity

- Day-ahead liquidity lower in GB than other European electricity markets
- Greater volumes cashed-out than traded on APX within-day market:
 - Approx. 15 TWh/annum versus 10 TWh/annum

Day-ahead trading volume as percentage of demand (2006)

Market	%
GB	8.5%
Netherlands	15.8%
Germany	16.6%
NordPool	63.0%

Sources: APX, EEX, Heren Energy, Nordel, Powernext

Key insights 5. Separation of energy and system actions in other markets

Dutch market

- Resolution of energy imbalances is clearly separated as a procedure from the resolution of system constraints
- A single price ladder is built following the resolution of system constraints
- Volumes are taken as needed in price order
- Only bids/offers from energy imbalance actions are used in determining cash-out prices

Texas (ERCOT) market

- Separate Balancing Energy Service (BES) and Ancillary Services markets (including day-ahead operating reserve)
- Also separate Transmission Congestion Rights auction
- Cash-out prices based only on actions taken in BES
- Ex-ante single cash-out price calculated using scheduling algorithm published 10 minutes before Settlement Period

Possible implications....(1)

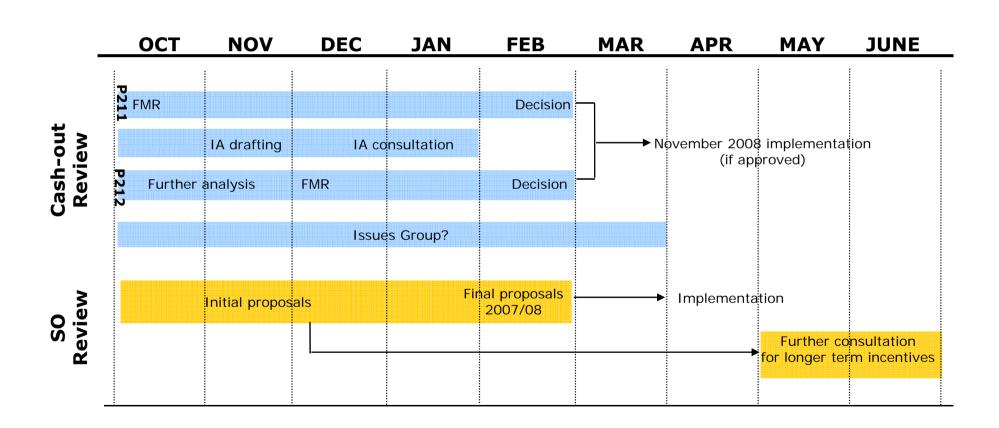
- Is dual cash-out pricing still appropriate versus single pricing?
- If so, should the current main/reverse price approach be reviewed?
 - is the reverse price cost reflective?
 - are such large spreads still required to provide incentives to balance?
 - is the spread generating unnecessary levels of RCRC to the detriment of smaller players?
- Is there another alternative based on a small symmetric spread around a pure energy price?
 - Maintains an incentive to balance
 - Arguably more cost reflective
 - Reduces unnecessary RCRC generation
 - Energy price may act as a reference index and help to promote liquidity

Possible implications....(2)

- BSAD methodology and governance could be revisited
- Shorter gate closure might be required if cash-out prices are to be based on an ex-ante market reference price
- An approach that establishes separate platforms for resolving energy and system imbalances e.g. via a "balancing market" might also be considered

Balancing Market Concept

Prof Stephen Littlechild



Moving forward

- Why longer term view is important:
 - Move away from incremental changes thus increasing investor confidence
 - Approach needs to be robust to changing generation mix and market interconnections
 - Stable and transparent cash-out regime required for setting effective longer term incentives for the System Operator
 - Recognising interactions with the Transmission Access Review
- A BSC Issues Group focusing on identifying a longer term target model for cash-out may be the most effective way forward
- This would not affect our evaluation of the current cash-out modifications

Timetable

Discussion and debate

Questions to discuss

- Strength of the case for change?
- Views on the balancing market approach presented by Prof Littlechild?
- Are there alternatives to the "Littlechild" approach using a continuously traded balancing market akin to the gas market?
- Main/reverse dual price versus single price versus small fixed spread?
- How important is it to equate RCRC and "Energy" BSUoS?
- Alternative ways of targeting BSAD availability fees?

Promoting choice and value for all gas and electricity customers