

Promoting choice and value for all gas and electricity customers

Additionality workshop

16 July 2007

Agenda – Additionality workshop 16 July – 10 until 12.30

- 1. Introductions
- 2. Strawman for renewables tariffs
 - a. Minimum bar strawman Cassie Higgs, NCC
 - b. Information strawman Nicki Small, SSE

3. Strawmen for low carbon tariffs

- a. Banding strawmen Jo Witters, Ofgem
- 4. Transparency general
- 5. Way forward

Promoting choice and value for all gas and electricity customers

Renewable tariffs Strawmen discussion

Cassie Higgs, NCC

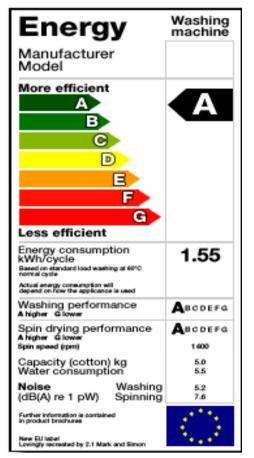
Nicki Small, SSE

16 July 2007

ofgem Promoting choice and value for all gas and electricity customers

Low Carbon tariffs - Strawmen discussions

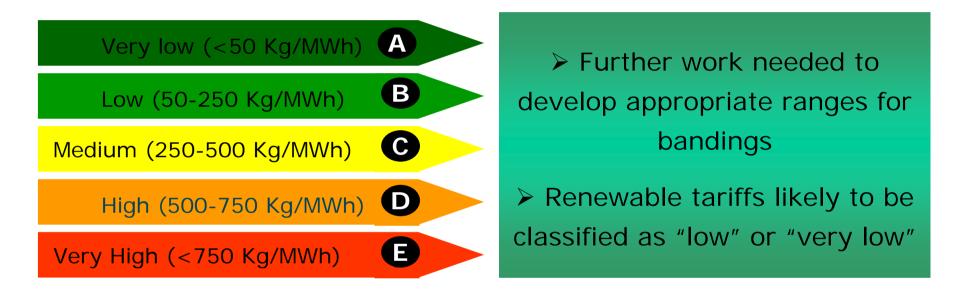
Jo Witters European Strategy and Environment


16 July 2007

ofgem Promoting choice and value for all gas and electricity customers

Low carbon tariffs

Potential to rate tariffs on the basis of their carbon intensity Introduce a rating system similar to existing appliance / car efficiency ratings


Allows customers to make choices based on carbon preferences

<100 A				
101-120 B				
121-160	G			
151-165	D		D	000g/km
166-185	E			
186-225	F			
226+		G		
	Environm	ental Information		
A guide on fuel economy available at any point of as well as other non-tect emissions. CO ₂ is the mi	and CO, emissions wf sale free of charge. In a nnical factors play a role	hich contains data fo addition to the fuel e e in determining a ca	fficiency of a car sr's fuel consum	, driving behavio
available at any point of as well as other non-tech	and CO, emissions wf sale free of charge. In a nnical factors play a role	hich contains data fo addition to the fuel e e in determining a ca	fficiency of a car r's fuel consum varming.	, driving behavior
available at any point of as well as other non-tecl emissions. CO ₂ is the mi	and CO, emissions wf sale free of charge. In a nnical factors play a role	hich contains data fo addition to the fuel e e in determining a c ponsible for global v	fficiency of a car r's fuel consum varming.	, driving behavior
available at any point of as well as other non-tect emissions. CO ₂ is the mi Make/Model:	and CO, emissions wf sale free of charge. In a nnical factors play a role	hich contains data fo addition to the fuel e e in determining a c sponsible for global v Engine Capacit	fficiency of a car r's fuel consum varming.	, driving behavior
available at any point of as well as other non-tecl emissions. CO ₂ is the m Make/Model: Fuel Type:	and CO, emissions wf sale free of charge. In a nnical factors play a role	hich contains data fo addition to the fuel ei e in determining a c uponsible for global v Engine Capacit Transmission:	fficiency of a car r's fuel consum varming.	, driving behavior
available at any point of as well as other non-teck emissions. CO ₂ is the mi Make/Model: Fuel Type: Fuel Consumption:	r and CO, emissions wi sale free of charge. In inical factors play a role ini greenhouse gas res	hich contains data fo addition to the fuel ei e in determining a c uponsible for global v Engine Capacit Transmission:	fficiency of a can r's fuel consum varming. ly (cc):	, driving behavior
available at any point of as well as other non-leci emissions. CO ₂ is the mi Make/Model: Fuel Type: Fuel Consumption: Drive cycle	r and CO, emissions wi sale free of charge. In inical factors play a role ini greenhouse gas res	hich contains data fo addition to the fuel ei e in determining a c uponsible for global v Engine Capacit Transmission:	fficiency of a can r's fuel consum varming. ly (cc):	, driving behavior
available at any point of as well as other non-leci emissions. CO ₂ is the mi Make/Model: Fuel Type: Fuel Consumption: Drive cycle Urban	r and CO, emissions wi sale free of charge. In inical factors play a role ini greenhouse gas res	hich contains data fo addition to the fuel ei e in determining a c uponsible for global v Engine Capacit Transmission:	fficiency of a can r's fuel consum varming. ly (cc):	, driving behavior
available at any point of as well as other non-leci emissions. CO ₂ is the mi Make/Model: Fuel Type: Fuel Consumption: Drive cycle Urban Extra-urban	r and CO, emissions w sale free of charge. In I nical factors play a rok ain greenhouse gas res Litres/100kd	nich contains data fo addition to the fuel e in determining a ca uponsible for global v Engine Capaci Transmission: m	ficiency of a car 'r's fuel consum varming. ty (cc): Mpg	, driving behavio
available at any point of as well as other mon-led emissions. CO ₂ is the mi Make/Model: Fuel Type: Fuel Consumption: Drive cycle Urban Extra-urban Combined Carbon dioxide emissi	r and CO, emissions w sale free of charge. In I nical factors play a rok ain greenhouse gas res Litres/100kd	nich contains data fo addition to the fuel e in determining a ca uponsible for global v Engine Capaci Transmission: m	ficiency of a car 'r's fuel consum varming. ty (cc): Mpg	, driving behavio

ofgem Promoting choice and value for all gas and electricity customers

Low carbon tariffs

Banding should become more challenging over time

What should the trajectory for emission reductions be set at?

> 2020 / 2050 targets?

Should bands be reviewed annually / every [x] years?

Information needed to enable customer choice

Information would need to be provided to support banding data

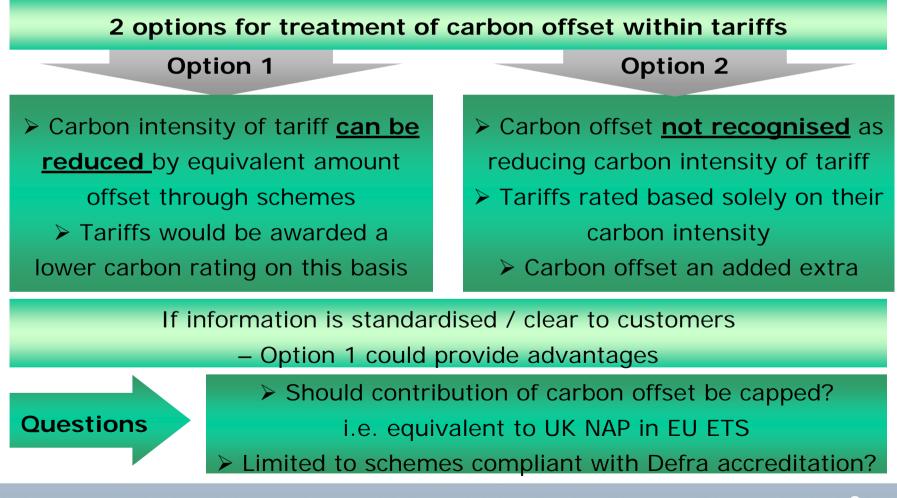
Customers could make better informed choices

Information could be used together with renewable rating

i.e. a tariff based on renewable supplies may achieve an 'A' carbon rating + renewable rating / stamp

Information to include:

(a) Fuel mix


(b) An indication of the average emissions

Q – likely to need this information at supplier level?

- Reduce concerns re additionality
- Enable customers to assess overall carbon intensity of the supplier

Treatment of carbon offsetting measures

Promoting choice and value for all gas and electricity customers