NTS Demand Forecast DSWG - 2 August 2006

Peter Zeng

Network Operations National Grid

Agenda

- Introduction
- Demand Forecast Overview
- Demand Forecast Models
- Forecast Performance
- Conclusions

Introduction

- Objectives
 - To fulfil the action DSWG placed on NG to present
 - "information on forecast development and calculation"
 - To give DSWG
 - an overview of NG demand forecasting process
 - an appreciation of key information used in the forecast
 - a description of models used
 - an overview of current demand forecast performance
- Reasons for demand forecasting
 - to fulfil UNC obligations including demand attribution process
 - to enable efficient and economic operation of NTS system
 - to facilitate efficient market operation by providing market participants with the most accurate demand forecast

NTS Demand Forecast Process

Forecast of LDZ Demand

It consists of

- Temperature sensitive loads (NDM) produced by forecasting models
- VLDMC (DM) OPNs provided by shippers

Weather stations 11 weather stations feed data to the 13 LDZs

Which weather factors affect gas demand?

- temperature
- wind speed
- rain
- SNOW
- cloud cover

Process diagram for producing LDZ Demand forecasts

nationalgrid

What is forecast and when?

End of day volume, mcm (Area under the curve)

ALN and profile models also forecast a volume for each hour

Within day and day ahead forecasts are run 5 times per day.2 to 7 day ahead 'Likelihood to Interrupt' (LTI) run once per day.

How?

- suite of models using different techniques

What does a model look like?

PROFILE – WITHIN DAY MODEL

PROFILE model uses the Box Jenkins technique to forecast within day gas demand. There are two different models in the program. Model 1 is usually used for the 10am forecast and model 2 for the rest of the day. However, if the 9am temperature is greater than either the 1pm or 3pm temperature then model 1 is used for the 1pm and 4pm forecasts.

Model 1 (at hour k) (used for 10:00 forecast)

 $\nabla \nabla_7 \mathsf{D}_t^{(h)} = \mathsf{w}_0 \nabla \nabla_7 \mathsf{T}_t^{(3)} + \mathsf{w}_1 \nabla \nabla_7 \mathsf{T}_t^{(6)} + \mathsf{w}_2 \nabla \nabla_7 \mathsf{T}_t^{(9)} + \mathsf{w}_3 \nabla \nabla_7 \mathsf{D}_t^{(k)} + (1 - \theta_1 \mathsf{B}) (1 - \theta_7 \mathsf{B}^7) \mathsf{a}_t$

Model 2 (at hour k) (used for forecasts at other times)

 $\nabla \nabla_7 D_t^{(h)} = w_0 \nabla \nabla_7 T_t^{(h-1)} + w_1 \nabla \nabla_7 D_t^{(6)} + w_2 \sum_1 {}^k \nabla \nabla_7 D_t^{(j)} + (1 - \theta_1 B) (1 - \theta_7 B^7) a_t$

where $T_t^{(h)}$ is the temperature at hour h on day t, $D_t^{(h)}$ is the corresponding hourly demand on day t, a_t is the error in the forecast demand for hour h on day t, B is the backward shift operator i.e. $By_t = y_{t-1}$ $w_0, w_1, w_2, w_3, \theta_1, \theta_7$ are model parameters.

Forecasting NTS Direct Connected Loads

- Input Data
 - Shippers
 - OPNs/SFNs for NTS direct connected loads, first received at D-1 17:00.
 - Met Office
 - For D & D-1, forecast temperatures and wind speed
 - For D-2 to D-7, forecast max and min temperatures
- Forecast is produced for each individual site
- Models Used
 - Pass through OPNs where available
 - Profile model, forecast end of day volume which is then profiled to hourly offtake
 - regression model, forecast individual hourly offtake
 - Models are trained every week

NTS Demand Forecasting Model types

NTS Demand forecasting schematic

Winter 2005/06 Forecasting Performance

nationalgrid

Conclusions

- Demand Forecasting is inherently uncertain due to uncertainties in weather and prices
- Forecasting accuracy improves from 7 days ahead to within day as more accurate information becomes available
- NTS demand forecast, although robust at present, faces significant challenges to improve future forecasting accuracy, especially with the introduction of demand forecasting incentive this winter.