

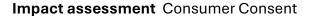
Impact assessment

Consumer Consent Solution Draft Impact Assessment

Division: Energy System Design & Development

Team: Energy System Digitalisation

Associated documents: Consumer Consent Solution Consultation | Ofgem


Consumer Consent decision | Ofgem

Coverage: Full coverage

Type of measure: Retail Competition measures

Type of IA: Not Qualified under Section 5A UA 2000

Enquiries: Digitalisation@ofgem.gov.uk

© Crown copyright 2025

The text of this document may be reproduced (excluding logos) under and in accordance with the terms of the Open Government Licence.

Without prejudice to the generality of the terms of the Open Government Licence, the material that is reproduced must be acknowledged as Crown copyright and the document title of this document must be specified in that acknowledgement.

This publication is available at www.ofgem.gov.uk. Any enquiries regarding the use and re-use of this information resource should be sent to psi@nationalarchives.gsi.gov.uk.

Consultation Consumer Consent

Contents

Summary: Intervention and Options	5
What is the problem under consideration? Why is Ofgem intervention necessar	r y? 5
What are the policy objectives and intended effects including the effect on	
Ofgem's Strategic Outcomes?	6
Preferred option - Monetised Impacts (£m)	11
Preferred option - Hard to Monetise Impacts	11
Introduction	13
Section summary	13
Problem Under Consideration	13
Policy Objective	14
What we are consulting on	15
Consultation questions	17
Next steps	17
2. Approach to the Impact Assessment	18
Section summary	
Scope of Impact Assessment	18
The Counterfactual	
Methodology	
Costs – Solution Specific	
Costs – Industry Wide	
Benefits – Direct	
Benefits – Indirect	31
Indirect and Hard-to-Monetise Benefits to the wider economy	36
Assumptions	
Uncertainties – Risk Analysis	38
3. Analysis – Quantitative and Qualitative	40
Section summary	40
Monetised Cost Benefit Analysis (CBA)	40
Costs analysis	40
Benefits Analysis - Direct	42
Benefits Analysis - Indirect	46
Monetised Break-Even Point (BEP) Analysis	49
Hard to Monetise Cost Benefit Analysis	52
Other Direct Benefits	53
Risk Analysis	54
Other Impacts	55
Impacts on Network and Systems	55
Impacts on the Environment and Net Zero	56
Impacts on Growth	56
Public Sector Equality Duty	56

OFFICIAL

Impact assessment Consumer Consent

Monitoring and evaluation	
4. Conclusion and next steps	60
Appendices	61
List of Studies	62
Consultation questions	65

Summary: Intervention and Options

Rationale for intervention, objectives and options

We are consulting on the draft Impact Assessment (IA) for the implementation of a digital Consumer Consent solution. This IA is not qualified under S5a of the Utilities Act 2000.¹ For more details on this decision, please see previous Call For Input² and Consultations³. The draft IA sets out the potential impacts of the implementation of the Consent Solution. The conclusion of this draft IA sets out that the quantified benefits of implementing the Consent solution are potentially greater than the costs.

The consultation on this IA will close on 13 November 2025. After this date, we will consider all responses and evidence provided. We want to be transparent in our consultations. We will publish the non-confidential responses we receive alongside a decision on the Consent Solution and next steps on our website at ofgem.gov.uk/consultations. If you want your response – in whole or in part – to be considered confidential, please tell us in your response. Please clearly mark the parts of your response that you consider to be confidential, and if possible, put the confidential material in separate appendices to your response.

What is the problem under consideration? Why is Ofgem intervention necessary?

Ofgem partnered with what is now the Department for Energy Security and Net Zero (DESNZ) and Innovate UK (IUK) to commission the Energy Digitalisation Taskforce report which made a series of recommendations based on the vision laid out in the Energy Digitalisation Strategy.⁴ From this report, the partnership committed to exploring consumer consent as a priority to propel the changes needed to achieve digitalisation across the energy sector.

The energy sector currently lacks a single, standardised process for obtaining and managing consumer consent to share energy data. This fragmentation leads to inconsistent practices, consumer confusion, and "consent fatigue," undermining trust and limiting access to valuable datasets like smart meter data. Unlocking this data is essential for innovation and achieving a flexible, net zero energy system.

Ofgem's proposals for a digital solution will give consumers control over their data, with clear, real-time tools to grant, manage, and revoke consent. Consumer trust in the energy sector is paramount, and a robust solution for obtaining informed consent is key to achieving this. Industry intervention is needed to develop a digital consent solution that will be effective for consumers and efficiently adopted by industry. Ofgem has

¹ Utilities Act 2000

² Data Sharing in a Digital Future | Ofgem

³ Consumer Consent Solution consultation | Ofgem

⁴ Energy Digitalisation Taskforce | Energy Systems Catapult

selected RECCo as the delivery body to design, develop and deploy the Consumer Consent Solution. This will focus on the user journey while remaining flexible enough to fit with current and future systems in both the energy sector and, in future, cross-sector developments.

What are the policy objectives and intended effects including the effect on Ofgem's Strategic Outcomes?

The primary objective of the Consumer Consent Solution is to empower individuals by providing a secure, digital solution for sharing their energy data with trusted market participants. This will enhance consumer trust in data-sharing services, improve access to personal data across the energy sector, and enable greater participation in a digitalised energy system, aligning with a key priority area in Ofgem's 2025 Multi Year Strategy: shaping a retail market that works for consumers.⁵

Establishing clear, system-wide consent processes, the solution will give consumers greater control over their data and reduce barriers to engagement, further aligning with another key priority area establishing an efficient, fair and flexible energy system specifically referenced in Objective 14: making a more digitalised energy system work for consumers and again in 14.1: setting governance and standards to digitalise system data and improve data sharing.

Furthermore, the development of a digital consent solution is a critical enabler for accelerating the transition to Clean Power 2030 (CP2030) and beyond. The government's CP2030 ambition includes achieving 10–12 GW of capacity through consumer-led flexibility. A trusted, standardised, and consistent mechanism for consumers to share their energy data is a foundational requirement for this goal and a core component of future Smart Data Schemes.

In November 2023 we published our Call For Input (CFI) here we presented three options to industry stakeholders on solution design. In this section we also consider the impacts of doing nothing and operating under business as usual.⁸

Option One: A Single Technical Solution - Consumer Consent Digital Solution

This option proposed a single, technical solution—mandated by Ofgem and adopted across the energy sector. It would provide consumers with a simple, centralised platform to manage their data-sharing preferences through clear opt-in and opt-out

⁵ Ofgem's multi year strategy

⁶ Clean Power 2030 Action Plan: A new era of clean electricity – main report - GOV.UK

⁷ Potential new smart data scheme to drive innovation and support consumers in the

⁸ Data Sharing in a Digital Future | Ofgem

mechanisms.

Benefits

- Aligns with Energy Digitalisation Taskforce recommendations and provides assurance of meeting project objectives.
- Empowers consumers with a single, user-friendly platform to manage consent.
- Builds on familiar models (e.g. pensions dashboards), improving accessibility and reducing consent fatigue.
- Enhances inclusion for digitally disadvantaged users by simplifying consent processes.
- Promotes standardisation and interoperability, supporting innovation and data quality.

Risks

- Requires strong consumer engagement, particularly among the digitally unmotivated.
- Without clear incentives, consumers may be reluctant to share data.
- Unlike Open Banking, this initiative lacks a clear and defined government mandate, potentially slowing alignment across stakeholders.
- Although the digital consent solution would not store data beyond consent records, it introduces cyber risk as a centralised access point.

Option Two: A set of principles outlining a consistent way for trusted market participants to obtain consent.

This option proposed that the industry delivers a consent solution guided by a mandated set of principles and supporting guidelines. Developed by Ofgem in consultation with industry and consumer groups, the framework would define core requirements for obtaining, managing, and withdrawing consent securely and consistently.

Benefits

- Allows organisations to tailor solutions to their customer base while maintaining consistent standards.
- Compared to a technical solution, this approach may be less resource-intensive to implement and maintain.

- Easier to update in response to evolving technology, regulation, and consumer expectations.
- Removes the need for suppliers to develop an interoperable technical solution independently.

Risks

- A decentralised approach may require more oversight to ensure consistent implementation and compliance.
- Manual or non-automated processes could increase the risk of human error and administrative overhead.
- Without a centralised, consumer-facing tool, it may be harder for individuals to understand or manage who has access to their data.
- Consumers' willingness to give consent may vary depending on their relationship with individual suppliers, potentially limiting uptake.

Option Three: Voluntary Industry Code for Consent

This option proposes a voluntary, industry-led code that establishes a common standard for obtaining consumer consent. Developed collaboratively by market participants, the code would outline agreed processes for capturing and managing consent, similar to Ofgem's Confidence Code for price comparison websites.⁹

Benefits

- Offers a low-risk, test-and-learn approach that could evolve into a technical solution or principles-based framework.
- Encourages collaboration and innovation with minimal regulatory intervention.
- Builds on existing supplier relationships, potentially increasing consumer trust and engagement.
- Allows the industry to address challenges as they arise, supporting gradual adoption.

Risks

 Without a mandated framework, inconsistent approaches may emerge, leading to consumer confusion and reduced trust.

⁹ Confidence Code - code of practice for online domestic price comparison services | Ofgem

- Voluntary participation may result in uneven adoption and reduced accountability, making regulatory enforcement difficult.
- Absence of a formal regulatory framework could allow dominant players to restrict data access, limiting competition and innovation.
- Non-automated processes increase the risk of human error and administrative burden.

Option Four: Do nothing, Business as Usual Approach (BAU).

This option proposes a non-interventionist approach, with Ofgem allowing the market to develop without any policy changes to shape the market. This will allow the existing siloed approach to consumer consent to entrench and is, based on industry responses and our understanding of the market, be unlikely to scale up to meet the requirements of the nascent flexibility markets.

Benefits

- No requirement for further input from Ofgem or RECCo
- No requirement for directed industry adaption

Risks

- The current consent landscape for energy data sharing is fragmented, with no standardised method for consumers to grant or withdraw consent.
- The variety of inconsistent and often complex processes used can lead to "consent fatigue" and confusion. Consumers may feel overwhelmed and uncertain about who has access to their data.
- For third parties, this lack of standardisation creates inefficiencies, requiring multiple, uncoordinated data access requests. This hinders innovation, limits scalability, and reduces the potential benefits of data-driven services.
- The fragmented system risks undermining emerging data-sharing initiatives.

 Consent is a foundational enabler for distributed flexibility, which is essential for a low-cost, inclusive transition to a smarter energy system.
- It also plays a critical role in aligning with existing programmes aimed at digitalisation and consumer empowerment.
- Risks dismissing clear appetite for change The November 2023 Call for Input (CFI)demonstrated strong support for action, with 87% of respondents recognising the need for a solution. Following consultation, Option One—a single technical solution—emerged as the preferred approach, with 74% of respondents identifying it as the most favourable.

-

¹⁰ Data Sharing in a Digital Future | Ofgem

Ofgem's Forward Work Plan 2024 identifies digitalisation and data sharing as key priorities, including the introduction of a consent mechanism. ¹¹ Without a fast, trusted, and standardised approach to consent, progress on system digitalisation and data, access will be significantly delayed.

Justification for preferred option (Option One, a single technical solution)

During a two-year policy cycle across workshops, CFIs, Consultation, working groups, and other engagement, the overwhelming view from industry was that there was an issue with siloed and high friction consumer consent that justified intervention in order to realise the nascent flexibility market at the scale required. Further to this, the view was that a technical solution was the best path. During further consultations, this approach was refined to a technical solution with some centralised requirements and significant portions of the solution decentralised.

The consultation showed industry support for RECCo as the preferred delivery body of the three options, and there was strong support for a more combined approach, bringing in expertise from outside of the energy sector for a multi-disciplinary approach to both the consumer-focused and socio-technical aspects of the solution.

Explain how was the Net Benefit monetised, NPV or other The Net Benefit of the preferred option was monetised based on:

- Indicative costs of the design, development, and deployment of the solution
- Indicative cost to industry of aligning with the technical requirements of the solution.
- The expected direct benefits to customers from using the solution in terms of bill reductions.
- The expected indirect benefits of the solution through the enabling and facilitation of other decentralisation and flexibility initiatives.
- The timeline of the analysis was from 2025 to 2033, with a monetised base year of 2025.

¹¹ Forward Work Programme 2024/25

Preferred option - Monetised Impacts (£m)

The estimated annual costs and savings/benefits are then in real terms for each year. Then, the NPV is calculated based on the annual net benefit for each year from 2025 to 2033

Summary of options	Benefits	Costs	BCR	Key considerations
Average or expected scenario	£345.92m	£75.61m	4.58	Scenario described in para 3.27
Worst case scenario	£77.23m	£90.15m	0.85	Scenario described in para 3.27
Best case scenario	£564.38m	£62m	9.10	Scenario described in para 3.27

Preferred option - Hard to Monetise Impacts

Describe any hard to monetise impacts, including mid-term strategic and long-term sustainability factors following Ofgem IA guidance.

Outside of those impacts where a monetary value has been calculated, this policy proposal is expected to increase consumers' sense of control over their data and empower them accordingly. It is also expected to increase the understanding and take up of flexibility services through the value exchange of data. Furthermore, consent is a significant control point for consumers to share their data and device control, which research has shown a motivator to engage in consumer-led flexibility. Finally, these benefits are expected to proportionately benefit those who have not yet engaged with these services or the energy market at large, creating a progressive benefit. These benefits are challenging to ascribe a value to and difficult to measure, however we expect to see increased uptake in engagement and measurable changes in consumer attitudes through satisfaction surveys.

Key Assumptions/sensitivities/risks

Assumptions for this analysis are detailed in paragraphs 2.26-2.31. The key sensitivities of the policy benefits are based on the consumer uptake of the solution. This uptake will be tested through the solution itself via user metrics. Another key sensitivity is the

OFFICIAL

Impact assessment Consumer Consent

degree to which the policy lowers friction for other initiatives, which can be understood through user engagement and satisfaction surveys. A critical component of the efficacy of the policy proposal will be consumer trust; both the domestic consumers granting consent and the business consumers seeking consent. This trust will similarly be tested through existing satisfaction surveys.

The policy will be reviewed, with a scheduled review date set for July 2028.

This proposal is not considered to be within the scope of the Public Sector Equality Duty as discussed in previous CFI, Consultation, and Decision.

1. Introduction

Section summary

The proposed Consumer Consent Solution will enable consumers to confidently grant, manage, and revoke (outside of contractual terms for supply) consent to share their energy data with third parties in a robust, consistent, and trusted way. This will support the transition to net zero at the lowest cost to consumers through opening up valuable smart meter data.

Problem Under Consideration

- 1.1 Several projects and analyses of the energy sector have identified the lack of a single, standardised process for obtaining and managing consumer consent as a major blocker for access to smart meter data. 12,13,14,15 As a consequence of this lack, issues identified are;
 - Reduced visibility of demand on the network which hampers planning and effective balancing of markets.
 - This reduced visibility further hampers forecasting, necessitating more assumptions; in turn reducing accuracy, and requiring greater redundancy in increased generation cost.
 - Fewer positive consumer outcomes through tailored offerings from industry, and less consumer value available through use of data.
 - Challenges in the customer journey through increased complexity, friction, and repetition, leading to lower consumer engagement.
- 1.2 Several attempts have been made previously to address this issue, following from the recommendations from Citizens Advice and the EDiT report. 16,17,18 They were not successful due to a number of factors, including a focus on centralisation in

¹² The Smart Meter Data Dashboard - Citizens Advice

¹³ <u>Delivering a Digitalised Energy System - Energy Systems Catapult</u>

¹⁴ Consumer-Consent-Final.pdf

¹⁵ Building consumer trust in Smart Data

¹⁶ Midata in energy programme | Ofgem

¹⁷ The Smart Meter Data Dashboard - Citizens Advice

¹⁸ Delivering a Digitalised Energy System - Energy Systems Catapult

- approach, and the exogenous circumstances of COVID-19 pandemic and war in Ukraine precipitating gas supply issues.
- 1.3 The requirement to reach clean power by 2030 (CP30) is planned to rely on 10-12GW of consumer led-flexibility in the energy system. There is a clear need for a reliable and scalable consumer consent mechanism and scalable access to smart meter data to support the requisite growth in consumer-led flexibility as highlighted in the Clean Flexibility Roadmap.¹⁹

Policy Objective

- 1.4 As we progress towards net zero, the energy system becomes more interconnected, complex, and the pace of change will increase. Current system thinking is developing to address the 'trilemma' of security of supply, decarbonisation, and fair prices. The changes to the system are the greatest in a generation, and the key duty Ofgem must consider is to consumers, both present and future.
- 1.5 Smart Meter consumption data is considered personal data by the Information Commissioner's Office (ICO) and there are considerable insights that can be garnered from this data into an individual's lifestyle and choices.²⁰ It is currently legally required that this data be restricted without the express and informed consent of the individual who owns that data, the consumer, except in limited and tightly controlled aspects of the 'public good' basis of accessing that data.
- 1.6 The Consumer Consent Solution policy focuses on empowering individuals through the provision of a secure and trusted digital solution for consenting to share their energy data with market participants who can offer a value proposition in exchange. The market for products based on the sharing energy data, specifically smart meter data, has been hampered by a lack of consistent process for recording and sharing consent.
- 1.7 With regards to the overarching policy objectives this work supports, the Consumer Consent Solution is a key area for Ofgem's Multi Year Strategy (MYS) Objective 14: Making a more digitalised energy system work for consumers.²¹ It is also referenced in our Strategic Direction Statement (SDS) and Forward Work Plan (FWP), as well as being a foundational requirement for future Smart Data Schemes, which also supports Ofgem's consumer duty. ²²,²³

¹⁹ clean-flexibility-roadmap.pdf

²⁰ What is valid consent? | ICO

²¹ Ofgem's multi year strategy

²² Preliminary Strategic Direction Statement for industry codes

²³ Forward Work Programme 2025/26

Consultation so far

- 1.8 In August 2024, we consulted on our preferred policy option, to appoint RECCo as the delivery body to design and deliver a digital Consumer Consent platform which would standardise and streamline the granting, managing, and revocation of consent to share energy data for consumers. In April 2025, we confirmed our minded-to position, that RECCo would be the delivery body for this work. We felt the case for intervention was made through the EDiT report, multiple workshops, the Call For Input (CFI) and Consultation and that RECCo was the best placed entity to deliver this work.
- 1.9 There was strong stakeholder acknowledgement of the issues that a lack of consistent consumer consent caused, as detailed in the CFI and Consultation, and strong support for a new platform for consumer consent and for RECCo as the delivery body. This was viewed by respondents as the most effective proposal at the lowest proposed cost. However, there were consistent views expressed that an analysis of the costs and benefits for both this policy and the appointment of RECCo as Delivery Body be conducted.
- 1.10 Based on our own assessment and the feedback from respondents, who supported RECCo as the most appropriate of the three potential Delivery Bodies; SmartDCC, Electralink, and RECCo; we have selected RECCo to be the Delivery Body for the Consumer Consent Solution. We have always held that the complicated and multi-disciplinary nature of Consumer Consent as an issue means that no single organisation would have the in-house experience and expertise to effectively address the technical, user experience, accessibility, design, data modelling and development, legal, and governance challenges which the CC Solution will face, which necessitated the setting up of working groups.

What we are consulting on

- 1.11 We are consulting on the draft IA for the delivery of a digital consumer consent solution by RECCo Ltd.
- 1.12 This draft IA set out the potential beneficial impacts both direct and indirect for consumers and the energy industry of the design and delivery of this solution as proposed.
- 1.13 This draft IA also sets out the indicative costs, separated into the cost to design and deliver the solution as set out by RECCo, and the wider indicative costs to industry, specifically holders of Supply Licensees, to interact with the Solution as proposed in the Decision.²⁴,²⁵

²⁴ <u>FV-RECCo-Business-Case-2025-Consumer-Consent-Service.pdf</u>

²⁵ Consumer Consent decision | Ofgem

- 1.14 As we stated in paragraphs 2.17 to 2.22 in our consultation, we were and are of the view that any analysis of the three potential delivery bodies would necessitate excessive resourcing from Ofgem, and from the three delivery bodies, particularly given that two would, as a consequence of the selection process, be working at risk. Further to this, the three delivery bodies outlined three different delivery approaches, with consequentially different costings, and benefits. This triplication of any impact assessment was deemed as resource prohibited.²⁶
- 1.15 We reinforced that position in paragraphs 4.1 to 4.7 of the Consumer Consent Decision.²⁷ We committed to compare the value case and indicative costing of this policy position as opposed to the counterfactual, prior to the modification to appoint RECCo as delivery body. We consider a detailed cost and benefit analysis of each proposed delivery method would have been an unreasonable burden to place on potential delivery bodies.
- 1.16 As mentioned in the Introduction, the initial Call for Input considered three options, as well as a prevailing counter factual of non-intervention.
- 1.17 **Option 1** A single technical solution such as a Consumer Consent solution or dashboard.

Option 2 A set of principles and guidelines outlining a consistent way for trusted market participants to obtain consent, similar to Data Best Practice Guidance.

Option 3 A voluntary industry-developed code outlining a consistent way for trusted market participants to obtain consent, akin to the Confidence Code.

Option 4 Business-as-usual; do nothing and allow consent processes to continue without intervention.

- 1.18 Option 1 was selected from the responses to the CFI as the preferred option. These responses reflected and reinforced Ofgem's existing policy position (reached through the previously stated policy analyses) that Options 2 and 3 would not have the desired level of impact in the policy space. Similarly, Option 4, the do-nothing or non-intervention approach has been considered throughout this policy process and is the counterfactual for this analysis.
- 1.19 Our reasoning for retaining the non-intervention (counterfactual) approach for comparison while placing the alternative policy options considered in the CFI and the alternative delivery bodies from the Consultation is that these alternative options were dismissed as not fulfilling the stated policy aims at the CFI stage and would not achieve the intent of this policy. The alternative delivery bodies were considered to be capable of delivering a solution which would fulfil the policy

²⁶ Consumer Consent Solution Consultation

²⁷ Consumer Consent Decision

intent; however this would necessitate restarting the policy cycle, which is outside of the scope of what is being considered.

Consultation questions

- 1.20 We are interested in hearing stakeholder views in response to the following questions;
 - 1. Do you agree that we have to a reasonable degree identified, understood, and described the potential costs and benefits of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution?
 - 2. Do you agree that we have to a reasonable degree identified, understood, and described the potential impacts of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution?
 - 3. Are there, in your view, any unintended economic consequences of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution which we have not identified?
 - 4. Do you agree with our assumptions and proposed attribution rates for value accrued to the Consumer Consent Solution?

Next steps

1.21 Once the consultation on the IA has closed, we will consider all responses and evidence provided. We want to be transparent in our consultations. We aim to publish the non-confidential responses we receive and the final IA alongside RECCo's decision on final service design during Q1 of 2026.

2. Approach to the Impact Assessment

Section summary

This section details the sources of our figures for costs and benefits, and the assumptions which underpin them and the further analysis. This section also covers what has been counted and discounted and the rationale for those decisions.

Scope of Impact Assessment

- 2.1 The aim of this IA is to identify and evaluate the costs and benefits of designing and delivering a Consumer Consent Solution, and compare these to the counterfactual scenario (reflecting a Business-As-Usual or 'do-nothing' approach) to then assess the viability of the preferred option which will be delivered by RECCo pending a positive outcome for the consultation period of this IA. The chosen preferred option is based on the current understanding of the consumer consent landscape in energy, which is informed by previous policy analysis and existing impact assessments, listed in Appendix 1.
- 2.2 We intend to assess whether the implementation of the Consumer Consent Solution as proposed will enable enhanced secure access to smart meter data to further benefit the energy system and consumers to a degree of scalability that current systems do not appear to provide.²⁸
- 2.3 During the Call For Input, Consultation, and Decision, the proposed initial scope of the project was referred to as a Minimum Viable Product (MVP) and covered only domestic Smart Meter Consumption data. In further RECCo scoping exercises, this has been referred to as a Minimum Marketable Product (MMP). For the avoidance of doubt, we will refer to MMP throughout. This is the scope we are assessing the impact of for value for money; however we anticipate the Solution to increase depending on use cases, alpha testing, and iterative design which is outside the scope of this document.
- 2.4 To achieve the Cost Benefit Analysis, this IA will look at four aspects:
- Overall direct economic benefit namely the reduction in bills from consensual sharing of smart meter data, either through tailored tariff offerings, or detailed time of use tariffs - including the weighting applicable for distributional impacts

²⁸ P73 - clean-flexibility-roadmap.pdf

- Overall indirect economic benefit: the initiatives which CC Solution will fundamentally enable, how the assumptions underpinned the percentage of benefit accrued to the CC Solution through the enabling of other initiatives, such as;
 - Smart Meter Rollout
 - Data Integration Platform (DIP)
 - Market-wide Half Hourly Settlement (MHHS)
 - Smart Secure Electricity System (SSES)
 - Flexibility markets
 - There are other initiatives, such as Elexon's Smart Data Repository (SDR), which will be enabled by the CC Solution, however there is not yet a clear enough picture of expected value, so the enabling value has not been included in this analysis.
- Detailed indicative costs for the design, development and deployment of the solution. This section will be based on costings from RECCo and will cover personnel, IT spend, design, information campaigns, and deployment costs. As was proposed in the Consumer Consent Solution decision, we expect these costs to be recovered via the REC Cost Recovery Mechanism (CRM) and thus evenly spread between consumers.
- Industry or technical costings. What it will cost Suppliers to comply based on
 previous comparable workings for similar projects. Here we will rely on IAs from the
 MHHS and Open Banking (OB) project, acknowledging that the costs will be
 significantly less than these programs. We are only considering costs to Suppliers
 as they will be the only participants we propose to require participation by licence.
- 2.5 For comparison purposes, this IA will compare against the counter-factual Option 4 which was a non-intervention approach, or 'do nothing' and compare the indicative costs against the expected benefits monetised and hard-to monetise, as well as the direct and indirect to establish whether the net benefit is positive and sufficient to justify taking this action.

The Counterfactual

- 2.6 The counterfactual represents our view of what would result in non-intervention. In the case of consumer consent in the energy industry, this would not preclude consumers granting and managing their consent to share energy data. It would continue as is current, with a fractured, siloed, and non-standard way of recording and collating consent. This represents a continuation of current practices, rather than the absence of sharing energy data on the basis of informed consent. To clarify, we base this counterfactual on the assumption of the status quo, rather than a complete cessation of consent-based data sharing.
- 2.7 In this counterfactual scenario, we expect that the increased friction incurred by non-standardised granting, managing, recording, and revoking of consent results in less consumer engagement. Significantly, the reduced engagement is not evenly spread across demographics, but clustered in lower income deciles who are less able to share. Existing consent methods, in addition to being fragmented and siloed are industry led and commercially driven. Without interventionist incentive to bring the benefits of sharing energy data to those less immediately able to benefit from it, and generate profit, the benefits of the flexibility are more strongly slanted towards the 'low-hanging fruit' of prosumers, early adopters, and those already benefiting. Energy becomes more expensive for those who can afford it least, and unfairness to consumers increases.
- 2.8 The increased friction and lack of a central platform allowing 'at a glance' management of consents granted is expected to increase customer drop off and reduce overall engagement. This slows down the flexibility rollout and delays growth and development of the nascent flexibility market. This is exacerbated by the existing information asymmetry, likely resulting in incumbent participants suppliers with an interest in providing flexibility services, rather than purely load controlling entities. This results in lower competition, an increase in incumbent power and greater risk of an increase in monopoly power, to the point of posing a risk of market distortion.
- 2.9 The delay and slower growth of the flexibility market particularly in the light of the expectation stated in CP30 of achieving 10-12GW of consumer led flexibility as a key plank of balancing the intermittency of low carbon generation to ensure grid stability – poses a material risk to the government meeting its legal commitment to a zero-carbon energy system by 2030.

Methodology

2.10 As discussed previously, we have separated the expected benefits into those directly attributable to the CC Solution, and those indirect which are gleaned from the enabling of other initiatives. We have also separated the costs into those

- directly attributable to the design, development, and deployment of the solution, and those which will be required from industry to interact with the CC Solution. The methodology of each is as follows.
- 2.11 Direct Costs, or solution-specific costs: Our approach to testing the impact and cost of the proposed policy decision was to evaluate the solution costs provided by RECCo through their published business case, and bilateral conversations with the RECCo delivery team. We have chosen not to publish detailed breakdowns of the costs, to avoid breaching commercial confidentiality through materially affecting future procurement activities during development of the solution. This IA is being conducted outside the strictures of S5 requirements as detailed in the introduction, and previous papers.
- 2.12 Indirect costs, or industry-wide costs: The expected industry costs were collated through a literature review and desk-based research. These indicative costs were compared to previous initiatives with comparable areas of operation such as the smart meter rollout programme and Market-Wide Half Hourly Settlement. We acknowledge these are not directly comparable and have detailed the assumptions we have made in following sections.
- 2.13 Direct benefits: The methodology for this section was based upon the Ofgem Consumer Archetypes.²⁹ To avoid attributing benefits to consumers which may be already in place through non-CC Solution sharing of smart meter data ie sharing data through existing methods we discounted any archetype in which a majority of the archetypes identified themselves as 'early adopters' of new technology. We then calculated potential bill reductions based on DESNZ data, existing prices by archetype, and type of heating. We calculated potential uptake ranges based upon the uptake of smart meters by archetype, the yearly increase in uptake for Open Banking as an 'upper bound', and the percentage of archetype who consider themselves as 'early adopters'.³⁰
- 2.14 Indirect benefits: These were established by first conducting a literature review (see Appendix 1) and desk-based research to identify projects which would benefit from a more streamlined approach to consent. From this, conversations with subject matter experts and discussions with the leads of each projects left us with working assumptions as to the percentage of benefit attributable to the enabling the project, which we included in this analysis.
- 2.15 The Cost Benefit Analysis (CBA) identifies the break-even point between the direct and indirect policy costs and quantifiable benefits, both direct and indirect. The

²⁹ Ofgem archetypes update 2024 FinalReport v4.1.3.pdf

³⁰ Impacts of smart metering roll-out on household energy use - GOV.UK

- hard-to-monetise benefits have not been included in the CBA but are collated in the qualitative sections of the IA.
- 2.16 We have based this approach on the assumption that RECCo would be best positioned to provide the most accurate and detailed data regarding indicative costs of the solution, whereas existing analysis has been relied on to analysis the potential direct benefits to consumers. In addition, the potential impacts existing initiatives which could be enabled by the CC Solution are well-described. Collation and weighting of these existing analyses is best conducted by Ofgem according to existing methodology and consulted on through industry engagement.

Costs - Solution Specific

Summary of options	Set Up Costs (2025- 2027)	5-year Enduring Service Delivery Costs (Total over 5 years)	Post MMP Project Running Costs	Key considerations (Risks, assumptions, distributional impacts etc.)
Indicative costs for project delivery and embedding the CC Solution	£7m-£8.5m	£10.75m - £17.25m	£3.6m - £4.8m	Detailed in paragraphs 2.17 – 2.18

- 2.17 RECCo, as the chosen delivery body, has published a business case containing the indicative costs. Aspects of this have been redacted to protect the procurement process. While there were responses to the Consumer Consent Decision which suggested moving to a user pays model in future, this was not decided or considered during the consultation process. Consequently, the IA considers the ongoing costs as a continuation, rather than discounting them as potentially subsumed into a user-pays model in the future. 32
- 2.18 These indicative costs are based on a series of assumptions from RECCo and Ofgem which are as follows;

³¹ FV-RECCo-Business-Case-2025-Consumer-Consent-Service.pdf

³² Consumer Consent Decision

- Delivery costs are to the MMP stage with further development funding established for later iterations and subsequent user-led development – with cost-risk included – in the Enduring Service Delivery.
- It is assumed that the financial estimates held in RECCo's Market Testing Procurement Report are accurate. In order to ensure prudence, all estimates have been taken from the higher end cases to counter optimism bias.
- Assumptions regarding timing of spend, for example proximity to the end of each financial year, etc, are based on the best information available at time of writing.
- Performance assurance costs including independent assurance activities are included for the five years following the conclusion of the project.
- Similarly, costs of two permanent staff are allowed for in the five years at the conclusion of the project for enduring service delivery.
- We have not included costs for Consumer Awareness or Information Campaigns of the solution as no decision was consulted on or made regarding this aspect.
 This will progress as part of subsequent consultations (please see paragraph 3.8 3.10 for more detail regarding the importance of this).

Costs - Industry Wide

Summary of options	Set Up Costs (2025-2027)	Annual Costs	Key considerations (Risks, assumptions, distributional impacts etc.)
Based upon	£10.3m-	£1.6m - £2.5m	Considerations and risks covered
analytical	£15.9m		below, as is analytical weighting to
comparison to			compare to Open Banking and
previous			MHHS

2.19 The main driver for costs to industry is expected to be upgrading existing or purchasing new IT systems to interact with the CC Solution. We stated our expectation that supply licensees, as the holders of existing consent data, would record existing consents on the solution, and that this would be a requirement under licence. This impact would be mitigated by the use of standardised Application Programming Interfaces (APIs) to connect with the Solution, thus minimising IT spend.³³

-

³³ Appendix 1 of <u>2024-ccaf-the-global-state-of-open-banking-and-open-finance.pdf</u> for examples.

- 2.20 While there is no direct comparison available, as the eventual design of the solution API is currently ongoing and will be subject to the RECCo design consultation, we compared the expected cost with that of the MHHS Final Impact Assessment, while acknowledging that the IT systems adaptation required for Half-Hourly Settlement is substantially greater and affects more fundamental IT estates than the requirement to engage with a standardised API to transfer consumer consents.³⁴
- 2.21 Similarly, we are anticipating the majority of costs to industry to be transitional, and the ongoing cost of connection to be minimal. These transitional costs will be mitigated as much as practicable through clear technical specifications contained within the RECCo design consultation and Ofgem consultations prior to any change to the supply licence to include these obligations.
- 2.22 With regards ongoing connection costs, we are expecting that the service level agreements relating to uptime and availability will be agreed through the Trust Framework which will form the governance of the CC Solution, and be primarily contingent upon existing IT systems, rather than requiring dedicated uptime service support.
- 2.23 To ensure accuracy of costs estimates, we made multiple comparisons with existing project IAs to provide benchmarking. Further to the MHHS, deemed to be the closest parallel, we examined the Open Banking costs, which were analysed in the Smart Data Impact Assessment of 2024.³⁵ The costs here are an order of magnitude higher due to scale and degree of the change to existing IT systems, creation and resourcing of the Open Banking Implementation Entity (OBIE), accreditation and support costs.
- 2.24 It is worth noting that at the time the assumptions were that Open Banking (OB) industry implementation costs associated with the creation of the OBIE and Implementation Trustee would not exceed £20million (2016 index).³⁶ We are mindful of the lessons learnt from OB in conducting this IA and have chosen not to follow the route of a separate implementation entity due to the lesser complexity of this policy, and the risk of escalating costs and delays which OB experienced as the 'first mover' into opening up data within the UK economy.
- 2.25 In weighting the IT spend costs to industry based upon the comparisons, we made the following assumptions;
 - Volume of transactions (i.e. customers of each supplier who have granted consent to the supplier for processing energy data for purposes other than billing) will be around 11% of all existing customers. This is based on the

³⁴ MHHS Final Impact Assessment

³⁵ Smart Data Impact Assessment 2024

³⁶ Open banking lessons learned review – paragraph 47

current uptake for OB, and this is likely to be considerably higher than actual traffic with concomitant increase in cost assumptions; however, this will allow capacity for growth.

- Existing consent recording methods are not standardised, and existing IT systems will not be automatically able to interface with the CC Solution, which will require transformation at the boundary of each supplier's IT estate to be 'loaded' onto the CC Solution.
- Ancillary services such as configuration work to firewalls or any other network edge devices, or reconfiguration to enable connection will require procured service, rather than being a BaU capability. This is likely a pessimistic assumption, given the technical capabilities of suppliers, however we have factored this assumption in to consider the worst case in terms of costs.
- Monitoring, network, and server storage costs will be higher for onsite storage than for purely on-cloud or Software As A Service (SAAS) solutions.
 We have assumed the higher cost of on-site servers throughout to factor in the higher end of costings.
- With the example of OB, there has been a regular fall in operating costs, including a 30% fall in net OBIE operating costs from 2019 to 2020, from £47.6m to £32.7m. While this may prove similar with CC, we are not factoring in any predicted fall in costs to avoid any undue optimism bias.

Benefits - Direct

Scenario	Benefits	Key considerations (Risks, assumptions, distributional impacts etc.)
		Assumptions explained in paragraphs below,
Low Uptake, Low Saving	£8.9m	with accompanying calculations in Section 3
Low Uptake, High		Assumptions explained in paragraphs below,
Saving	£15.4m	with accompanying calculations in Section 3
High Uptake, Low		Assumptions explained in paragraphs below,
Saving	£45.3m	with accompanying calculations in Section 3

High Uptake, High		Assumptions explained in paragraphs below,
Saving	£69.8m	with accompanying calculations in Section 3

- 2.26 When analysing the direct economic benefits, we were cautious to count the overall benefit to a typical or average consumer. We also considered that those who are early adopters of new technologies namely those who already have EVs, solar PV, in-home batteries, smart meters, etc were presumed likely to be already sharing consumption data with a load controller, aggregator, or other service provider. Therefore, they would benefit from the CC Solution less than those on lower income, with less ability or wherewithal to benefit from their energy data. As such, we have weighted the relative benefits according to both Ofgem Consumer Archetypes and Citizen's Advice Research.³⁷
- 2.27 Citizens Advice (CiTA) research shows that 92% of consumers think that it is important to be given options to opt out of providing access to their data. CiTA state a "consumer consent portal will help build the trust and confidence that consumers need to engage in the energy market as it transitions to net zero and more consumer data-derived innovative services begin to be offered".³⁸
- 2.28 CiTA found that consumers consistently value the ability to make choices about how much data they share, with the vast majority of consumers saying it is important that they be able to opt-out of sharing detailed energy usage data even as familiarity with the smart meter rollout grows (89% in Smart and Clear [2014] compared to 92% for more recent figures [2024]). CiTA's recent 'Get Smarter' research also found that consumers who are most engaged with smart-enabled products and services value the ability to opt-out most highly. As smart technology becomes more widespread and better understood, the importance of opt-outs and user control will continue to grow.
- 2.29 Most research has shown that consumers are most willing to share their energy data when the anticipated trade-off is that of lower energy prices. While the variation in consumer uptake of the CC Solution and the variation in benefit to such that any calculations for an average benefit would not be illustrative, the benefit can be assigned ranges. These ranges are based upon where direct bill-reduction benefits are expected to accrue by the relevant Consumer Archetypes (taken from 2024 report) on the basis of where energy efficiency savings could be made based upon their electricity use, heating, home insulation, and other circumstances. 40

³⁷ Ofgem archetypes update 2024 FinalReport v4.1.3.pdf

³⁸Citizens Advice response to Ofgem consultation on a Consumer Consent Solution Website Copy.pdf

³⁹ Clear 20and 20in 20control 20-

²⁰Energy 20consumers 20views 20on 20data 20sharing 20and 20smart 20devices.pdf

⁴⁰ Ofgem energy consumer archetypes update 2024

2.30 To avoid optimism bias in this IA, we have discounted archetypes defined as 'early adopters' as we expect those to already be sharing energy data and not to be motivated to further share through the deployment of the CC Solution. This removes B6, D11, E14 – F16, H20-J24 from the table on pages 10-12 of the Ofgem Consumer Archetypes.

Table 2.1 – Consumer Archetypes and Expected Uptake/Benefits

	Description	Number of Households	Average Elec Consumption (kWh)	Presumed uptake (%)	Expected ⁴¹ reduction in bills (£)
A 1	Lowest income; mains gas; retired; 75+ years old; single adults; owner-occupied; urban; not early adopters; no internet connection; no degree or higher	578,333	2,742	0.5-2%	£35-£50
A 2	Low income; housing association; single adults; 55+ years old; prepayment meter; WHDS eligible; good EPC rating; no degree or higher	868,191	2,849	5-8%	£45-£80
A 3	Low income; mains gas; retired/unoccupied < 65 years old; prepayment meter; housing association/local authority; disability benefits; mobility disability; CWP eligible; WHDS eligible; good EPC rating; no degree or higher	883,413	3,519	1-3%	£40-£65
B 4	Low income; electric heating; retired/unoccupied; 65+ years old; purpose-built flats; owner-occupied/housing association; high electricity consumption	731,318	4,811	2-11%	£55-£95
B 5	Low income; electric/solid fuel/LPG heating; 45+ years old; retired/unoccupied; disability benefits; high electricity consumption	465,288	6,597	2-4%	£40-£60
9	Lower-middle income; couples/single adult woman; retired; 65+ years old; owner occupied semi- detached/terraced dwellings;	3,408,514	3,337	1%-10%	£60-£100

 $^{^{41}}$ Expected reductions based on electricity bills only, ranges calculated from Which?, DESNZ, and CitA figures for optimiser service from sharing smart meter data with optimisation services.

	average energy consumption; WFP eligible				
D 1 0	Lower-middle income; mains gas; disability benefits; mobility & dexterity disability; retired/unoccupied; owner occupied; semidetached/terraced; 55+ years old; not early adopters; CWP & WFP eligible;	1,163,946	3,881	2-4%	£35-£65
D 1 2	Lower-middle income; retired 65+; owner occupied; detached; couples; high gas consumption; not early adopters; eligible for WFP; suburbanites	1,457,829	3,952	1-9%	£40-60
G 1 7	Upper middle income; Oil/Other heating system; unconventional housing; Owner occupied; self-employed; couple/single adult; 45+ year olds; rural; unknown EPC rating	163,166	5,901	2-5%	£90-£165
G 1 8	Upper middle income; Other heating fuel; owner occupied; full-time employed/retired 65+; low scheme eligibility	667,836	5,294	2-5%	£100-£170
H 1 9	Upper-middle income; oil heating fuel; retired 65+/full-time employed; poor EPC rating; rural; owner-occupied; detached/semi-detached; WFP eligible	675,712	4,907	0.5-2%	£60-£85

2.31 This analysis of bill reductions was based on the gross figures from the most recent (2019) Impact Assessment for Smart Meter rollout from p35, which assumed a baseline figure of 3% for electricity and 2.2% for gas, based on supplier research. Our rationale for weighting by archetype is as follows;⁴²

A1 – With this archetype having the lowest proportion of internet access, and the greatest degree of usage stability and low 'peakiness', there is the lowest likelihood of engaging with the CC Solution through digital exclusion through lack of connection. This cohort is not disengaged, with most having switched tariff at least once, and engaged with the energy market in the past 12 months. Coupled with CitA or other advocacy, there may be engagement, but this is hampered by the lack of capacity to flex due to low peakiness. As a result, we have assumed 1-3% are likely to engage with the CC Solution, and those who do will see a minimal reduction in bills, due to low electricity usage, poverty, and lack of flexibility potential.

⁴² smart-meter-roll-out-cost-benefit-analysis-2019.pdf

A2 – With the archetype, there is a greater degree of flexibility of energy user, greater degree of engagement with the energy sector, with a higher percentage considering themselves early adopters. The higher percentage of housing association occupancy results in greater insulation and overall EPC rating, making low carbon technologies (LCTs), such as heat pump viable. That, coupled with the internet connectivity and increased digital literacy have resulted in our deeming this archetype more likely than A1 to engage with the CC Solution which, coupled with their lower-than-average electricity use and ability to flex, likely to see greater yearly reduction in bills.

A3 – Similar to the above archetypes, A3 is a low-income household, with 52% below the poverty line. Unlike A1 & A2, 100% of this archetype are on disability benefits, with 62% of the households having a mobility disability and 41% of households paying for electricity with a prepayment meter. Despite 84% having internet access, and 43% considering themselves early adopters; the preponderance of prepayment meters, and regular and inflexible electricity usages resulting from the necessities of disability, we anticipate lower uptake and lower immediate bill reduction.

B4 – This archetype is the lowest income of the B decile group. They consume significantly higher electricity than the UK average, due to being off mains gas, and will consequently see greater reduction on their bills through sharing of energy data and potentially flexing electricity use. In addition, this archetype are not early adopters, and 58% have never switched tariffs. There is no impediment – either capacity to flex or digital literacy – which accounts for this, which makes this archetype the 'target market' for a low friction way to share energy data for the expected reduction in bills. As such, we have a wider range of likely engagement to represent the uncertainty over the publication and consumer adoption of the CC Solution. However, the expected bill reduction is higher due to the capacity to flex, and the higher-than-average electricity usage.

B5 – This archetype shows considerable variation in tenures and dwelling types, with concomitant variety in EPC ratings, and few considering themselves early adopters. They are characterised by high electricity use and high (99%) receipt of disability benefits. This necessitates higher electricity use for heating and medical devices, and makes for inflexible demand, coupled with below average internet connectivity and above (nearly double UK average) prepayment metering. For these reasons, we have deemed this archetype as lower likelihood of adoption of the CC Solution, and less likely to benefit from substantial bill reduction.

C9 – This archetype is typified by owner-occupancy, with lower middle retirees (65+) who are either couples or single adult women. They do not consider themselves early adopters but have internet connectivity and simple bill-payer/owner arrangements as well as considering themselves engaged with the energy market (100% say they are engaged, and 87% have switched tariffs). While this archetype has typical electricity

usage, the potential to engage with the CC Solution as a lower friction alternative remains high. Of note is the size of this archetype, representing 3.41m UK households. Similar to B4, we consider this a wide range of potential engagement, but with marginally higher expected bill reduction.

D10 – Households in this archetype are average in electricity consumption, generally do not have electric heating, and are retired or unoccupied couples or multiple adults with children; with 100% on disability benefits. They have greater eligibility for GB schemes such as Cold Weather Payments. The requirement for consistent electricity use makes them relatively inflexible when it comes to demand. This, coupled with average consumption, makes them less likely to engage with the CC Solution, and less likely to see substantial benefits in terms of bill reduction. However, at 1.16m households, they represent a considerable cohort of UK consumers.

D12 – Similar to C9 and D10, households in the D12 archetype represent a larger proportion of UK households than others, with 1.46m households. Demographically, this archetype is characterised by retired (65+) owner-occupiers with large, detached suburban dwellings. Their gas usage is higher, with little scope for electrification of heating, and few early adopters in the archetype. However, 100% of this group have engaged with the energy market and have switched tariff. As with B4 and C9, the likelihood of engaging with the CC Solution is dependent on the how informed and willing to adopt the solution consumer are, and so calculations are necessarily based on a wider range. However, the reliance on gas means a lower potential bills reduction based on our assumptions of current design of the solution.

G17 – This archetype is differentiated by unconventional housing (such as converted churches, barns, houseboats, caravans, etc), low to negligible mains gas usage (using mostly oil and bulk LPG as heating), and very high electricity consumption. This group also has very high use of renewable source for heating. It is challenging to establish EPC ratings or create a typical profile for what gains could be made from this group engaging with the CC Solution, but the high energy use and high proportion of electrified heating could show considerable bill reduction.

G18 – This archetype consists of upper middle-income earners in rural owner-occupied households, with most heating coming from 'other' category. This is mostly a mix of bulk LPG and solid fuel; however – as with the G17 archetype – a high percentage (9%) use renewable sources of heating, meaning there is electrification, and scope for flexibility of electricity demand which can mean effective benefits from the CC Solution. This archetype could see significant bill reductions through the lower friction of the CC Solution and have lower self-declarations of being early adopters.

H19 – As the highest income archetype considered as part of this IA, H19 consists of upper middle-income couples with no children, who own their property in primarily

rural areas. Overall, they have poor EPC ratings and high electricity consumption, with most heating provided by unmetered fuel oil. 60% of this archetype have never switched tariff and are not likely to engage with the energy market. As such, we have calculated the likely engagement with the CC Solution as low, and the potential bill reduction as low, due to the lack of flexibility potential.

Benefits - Indirect

Summary of initiative enabled	Annual Initiative benefits	Attributable to CC Solution	Annual benefit attributable to CC Solution	Key considerations (Risks, assumptions, distributional impacts etc.)
Flexibility Markets	£1.6- £2bn	1%	£16-20m	Discussions with workstream experts and analysis to reach 1% attribution

- 2.32 There are a number of large-scale projects aimed at achieving a decarbonised energy system which require consumers to share their energy data which can only be shared between companies with the consumers' informed and explicit consent under UK GDPR. 43 While the new Data Use and Access Act 2025 (DUAA) makes some changes to data protection laws in order to promote innovation and economic growth while still protecting people and their rights; this Act does not remove the requirement for consent to share energy data. 44
- 2.33 Consequently, these projects are expected to be enabled by the CC Solution, by a greater degree than the current non-standardised and more complicated processes to record and manage consumer consent.

Table 2.2 – Initiative supported by CC Solution

Initiative	Description	Interaction with CC Solution
Flexibility Markets	Overall, Ofgem and government are seeking to create a market for flexibility of demand – CP30 requires 10-12GW of consumer driven flexibility to reduce generation and system build	Granting and managing consent has been highlighted as a source of potential friction for Flexibility

^{43 &}lt;u>ico-response-beis-consultation-smart-appliances-20220928.pdf</u>

⁴⁴ The Data Use and Access Act 2025 (DUAA) - what does it mean for organisations? | ICO

SSES	This is the driving initiative – arising from the Energy Act 2023 – of a licensing framework and creating market conditions for growth in flexibility, led by DESNZ and Ofgem.	Similarly, the CC Solution is critical to reduce friction and consumer 'drop-off' for Flexibility Service Providers (FSPs)
Smart Meter Roll- out	The rollout of smart meters is an ongoing government drive with the 2025 target of 74.5% of domestic properties	Simpler ways to use the SM Consumption data will improve take-up of SM installation, by providing more attractive 'offers' from market
MHHS	Market Wide Half Hourly Settlement is in progress and will be delivered over the next 18 months. While settlement has enabled flexibility markets with further developments such as code modification P483, there are nonsettlement uses for HH data while will accrue greater utility to this project. 45,46	Similarly, half hourly consumption data has considerable utility outside of settlement, which can be unlocked with the CC Solution.

2.34 Following this analysis, the IA will cover the hard to monetise indirect impacts as calculated for the wider economy in paragraphs 2.53-2.56.

Flexibility Markets

- 2.35 One of the stated aims of the Consumer Consent solution is to, through the standardisation and simplification of managing consent, ensure that consumers find it easy to share and manage consents, increasing uptake of services which require access to energy data. We anticipate that this reduced friction will increase uptake of flexibility services.
- 2.36 Although detailed domestic Demand Side Response (DSR) modelling by Government is not currently available, there is Government modelling of costs and benefits proving high level evidence that DSR, and domestic DSR specifically, can deliver system cost savings. The 2022 joint DESNZ and Ofgem Electricity Networks Strategic Framework (ENSF) analysis shows 15 GW of DSR (with 10-14 GW from EVs) can reduce overall system costs by 5% to 2050. ⁴⁷ This is a £40-50 billion system cost reduction to 2050; with £10-20 billion saved from lower distribution network reinforcement, and the remaining £30 billion saved from lower generation/storage capital costs. The modelling has limitations likely to

⁴⁵ Flex market opened to all consumers in 'giant step' - Utility Week

⁴⁶ P483 Balancing and Settlement Code (BSC) changes | Ofgem

⁴⁷ Electricity networks strategic framework - GOV.UK

- underestimate the benefits of DSR, additionally it should be noted that cost of DSR is modelled as zero, with justifications provided for this assumption.
- 2.37 Modelling limitations include for example: Vehicle to Grid (V2G) flexibility is not included and only implicit (wholesale based) flexibility is modelled. The energy system cost of DSR is assumed to be zero because the assets (predominantly EVs and HPs) are being installed anyway through the economy-wide 2050 net zero transition, and the additional cost of adding smart hardware/software is considered to be negligible. Other government analysis indicates there will be small increases in device costs for smart functionality and small costs to firms for implementation.^{48, 49}
- 2.38 Modelling from DESNZ and Ofgem's joint 2021 Smart Systems and Flexibility Plan (SSFP) has quantified the benefits of a 'high flexibility' World B type scenario. Overall, a 'high flexibility' scenario reduces system costs by £30-70 billion to 2050. Through reducing generation build out we save up to £50 billion to 2050 and through reducing network build out we save up to £26 billion to 2050. This analysis shows the annual £10 billion cost savings in 2050, coming predominantly from generation cost savings but also from network cost savings. It should be noted that this modelling has several limitations, which are likely to underestimate the savings flexibility can provide.
- 2.39 Modelling limitations include for example: V2G flexibility is not included, distribution network constraints are not accounted for, scenarios are not net zero compliant in 2050, only implicit (wholesale based) flexibility is modelled, and it does not consider long duration energy storage flexibility.
- 2.40 These figures show the direct benefit of flexibility as a whole. We predict that this value to the energy system will be enabled by the reduced friction of granting and managing consent through the CC Solution. However, the progress made by industry, Ofgem and government in creating the conditions to allow a flexibility market to flourish are such that the CC Solution can only be counted as an enabler, rather than a direct driver. This utility was highlighted in the Clean Flexibility Roadmap, which has a named action specifying RECCo delivery of the CC Solution.⁵¹
- 2.41 In order to calculate the percentage value attributable to the streamlining and standardisation of obtaining and managing consent, and the concomitant reduction in friction for flexibility service providers and consumers in a nascent market, we have consulted with workstream experts and considered the expected increased uptake from RECCo figures.⁵² To account for optimism bias,

⁴⁸ Electric vehicle smart charging - GOV.UK

⁴⁹ Delivering a smart and secure electricity system: implementation - GOV.UK

⁵⁰ Transitioning to a net zero energy system: smart systems and flexibility plan 2021 - GOV.UK

⁵¹ Action 45 on p72 of <u>clean-flexibility-roadmap.pdf</u>

⁵² FV-RECCo-Business-Case-2025-Consumer-Consent-Service.pdf

we have considered the cost saving to be two orders of magnitude less than the overall benefit calculated for flexibility markets through reduction in system costs. This consideration is based upon the expected lowering of friction generated by the CC Solution which will enable flexibility markets. These savings will be achieved through enabling the flexibility markets to grow through more efficient consent arrangements, resulting in reduced generation build and system build, as described above.

Smart Meter Rollout

- 2.42 The CC Solution is being developed, as part of the MMP, to allow the consensual sharing of smart meter data specifically. While the system is designed to iterate into further datasets in future, this IA is focused on the benefits of MMP only, necessarily, this focuses on the holistic use of smart meter data. Similar to the flexibility analysis above, we have taken that approach that it is impractical to calculate the individual take-up of sharing SM data on a household-by-household basis, due to the number of variables in circumstances.
- 2.43 Benefits from the smart meter rollout are assigned in the most recent Smart Meter Rollout IA as positively impacting the following areas;⁵³
 - Consumers through lower bills and greater energy efficiency
 - Suppliers through ease of settlement and greater visibility of demand
 - Demand Shifting through enabling flexibility services and allowing consumers to shift their consumption temporally to reduce peak costs and time of use tariffs.
 - Networks through reducing peak demand, increasing resilience, and reducing the need for network build to cover intermittency
 - Carbon and air quality through the above benefits reducing reliance on higher carbon technologies.
- 2.44 To avoid 'double counting', we have not included benefits previously accrued to the CC Solution. These are Consumer (accounted through direct benefits), Demand Shifting (accounted through indirect benefits), and Network (accounted through indirect benefits).
- 2.45 In considering what percentage of Supplier and Carbon and Air Quality benefits should be legitimately attributed to the CC Solution; we consulted with experts in the smart meter rollout programme and followed the established approach of two orders of magnitude lower than the whole value for Carbon and Air Quality. The CC Solution is intended to facilitate greater decentralisation and flexibility of the future energy system, predicated on low carbon technologies.

-

⁵³ smart-meter-roll-out-cost-benefit-analysis-2019.pdf

2.46 However, when considering the supplier benefits, we were cognisant that many suppliers may have existing consent mechanisms and access to consumers' consent profiles. As a result, the efficiency and access benefits to incumbent suppliers will be less than that accrued by non-supplier participants in the CC Solution. To acknowledge this, we proceeded on the assumption that three orders of magnitude less, or 0.1% attribution is a proportionate assumption for the enabling and reduction of friction resultant.

MHHS

- 2.47 Predicting electricity system outcomes such as the potential for load-shifting through a flexibility market facilitated by MHHS is challenging, given the complexity of systems, change of pace, and the interplay between systemic, technological, and behaviour of consumers in markets. Recent (August '25) changes to the Balancing and Settlement Code (BSC) have allowed flexibility services to be provided before a customer is switched to half hourly settlements. This shows the appetite for flexibility, and for the uses of half hourly data. While there is a clear and detailed IA for the settlement uses of half hourly data, we are of the view that there will be substantial and unforeseen non-settlement uses of the half hourly data from this initiative and expect interactions with the proposed Elexon Smart Data Repository (SDR). 55, 56
- 2.48 The utility of any smart meter data repository whether developed and maintained by Elexon, Smart DCC, or through a combination of both will require consent-based sharing of the data to achieve use of the data outside of a contractually controlled settlement basis. The CC Solution is expected to reduce the friction of this and increase direct utility. However, there is not a published value case for this repository which would allow further development of the analysis. We are therefore counting this as a hard-to-monetise benefit but expect that the value case can be more clearly developed as this workstream advances. ⁵⁷
- 2.49 The calculation range resulting from the MHHS IA analysis is necessarily wide, with potential welfare benefits ranging from £1.2 billion to £3.6 billion by 2045 (in 2018 prices). This represents the wide range of uncertainties around energy system transition. The tables we have calculated what of this value could be accrued to the CC Solution are listed in Appendix 4. From these, we have focused on the change in welfare, as opposed to the distributional analysis. While we considered the progressive impact of benefits between income levels of consumers archetypes in paragraph 2.30 and 2.31, we consider distribution of

⁵⁴ P483 Balancing and Settlement Code (BSC) changes | Ofgem

⁵⁵ MHHS Final Impact Assessment

⁵⁶ P494 Establishing a Smart Data Repository (SDR) - Elexon BSC

⁵⁷ Smart Meter Energy Data Repository Programme: Phase 2 project - GOV.UK

- benefits between consumers and producers, unpriced carbon, or interconnector surplus to be outside the scope of this IA, due to the focus on consumers.
- 2.50 Unlike the smart meter data repository, the overall value case for MHHS is developed and understood through existing IAs which focus on the settlement uses of half hourly smart meter data. The case is made for the positive impact of this, however the development of the additional use cases for non-settlement uses of half hourly smart meter data which can be shared on a consent basis and will be facilitated by the CC Solution are less developed.
- 2.51 We took a similar approach to the benefits case for the smart meter data repository. We expect that there will be benefits to this work and are ensuring that RECCo and Elexon are aligned in their respective works to avoid siloed development, however the impact is not well enough understood yet to establish a monetised value. As such, we have added these considerations, and expected positive impact, in the hard-to-monetise sections.
- 2.52 Similarly, we are aware of the considerable positive impact which the CC Solution is expected to have on the ongoing word by DESNZ to develop and implement Smart Data Schemes in energy. 58 Any Smart Data Scheme will require a clear, consistent, and scalable consent mechanism to share consumer data which the CC Solution is intended to provide. The benefits case of this workstream is in progress but not yet in a position to allow any monetisable value to be calculated. We have therefore added the expected positive impact to the future Smart Data Schemes to the hard-to-monetise sections.

Indirect and Hard-to-Monetise Benefits to the wider economy

- 2.53 There are substantial benefits of greater use and access to smart meter data through informed consent, such as;
 - Academic research which has provided greater independence, support and nonintrusive monitoring for the elderly and those living with disabilities, as shown by this 2021 trial from the University of Edinburgh.⁵⁹
 - Increased consumer control of data, increased choice, engagement and input to the flexible nature of the changing energy system, which follows the lead set by government in the Planning and Infrastructure Bill.⁶⁰ This also creates a standardised way of determining the authoritative ownership of data through creating a standardised methodology for addressing the landlord-tenant question which has been approached in a piecemeal fashion in the energy sector, despite being a significant problem to solve for reliable consent. A

⁵⁸ Developing an energy smart data scheme: call for evidence (HTML) - GOV.UK

⁵⁹ Informatics researchers use smart meters to revolutionise independent living for people with disabilities and older people | School of Informatics | School of Informatics

⁶⁰ Households near new pylons to save hundreds on energy bills - GOV.UK

- definitive answer here will set precedent for other locational based sectors (water, telecoms, housing, etc) to build upon for smart data schemes across sectors.
- Increased symmetry of information and data access. A repeated finding for the Load Controller or Flexibility Service Provider Markets policy research has been that there is asymmetry of information when it comes to consumer data; in terms of the consumption data addressed by the CC Solution, Tariff Data, and Energy Smart Appliances (ESA) data.⁶¹ Flexibility service providers state they have difficulty locating or accessing business critical information that suppliers have ready access to.
- While workstreams are focusing on specific data flows, such as Tariff
 Interoperability and ESA Standards, the CC Solution is aimed at providing a
 standardised platform to allow sharing at the consumer's behest, aimed at
 addressing the overall informational asymmetry of energy data between
 incumbents and newcomers, intended to foster competition within existing and
 nascent markets.^{62,63}
- Reduced data breaches. The CC Solution is being designed by RECCo with input from the National Cyber Security Centre (NCSC) and from the Information Commissioner's Office (ICO) in addition to the working groups. The expectation is that this considered development of the solution will reduce the likelihood of data breaches through expert input in the design phase.⁶⁴,⁶⁵ In addition, the centralisation of a consent model will reduce the threat surface area through minimising the risk of the storage and transfer of personal data becoming compromised
- Future projects where the value is not yet directly calculable, such as MHHS,
 Smart Meter Data Repositories, and Smart Meter Data Schemes, as covered in paragraphs 2.47-2.52 above.
- 2.54 These benefits cannot be accurately ascribed a currency value; however we consider them as part of the wider empowerment of consumers, increased fairness in outcomes and overall consideration of data as holding value.

Assumptions

2.55 There are a number of assumptions which underpin this IA. The Clean Flexibility Roadmap, as published on 23 July 2025 contains delivery ambitions which underpin the path to Net Zero, as does the NESO publication of the Clean Power

⁶¹ Delivering a smart and secure electricity system: implementation - GOV.UK

⁶² Tariff Interoperability Project - Retail Energy Code Company

⁶³ Delivering a smart and secure electricity system: implementation - GOV.UK

⁶⁴ National Cyber Security Centre - NCSC.GOV.UK

⁶⁵ Information Commissioner's Office

- 2030 (CP30) Implementation Plan which informed the DESNZ Clean Power Action Plan. ⁶⁶, ⁶⁷, ⁶⁸
- 2.56 These delivery ambitions do not directly affect the delivery of the CC Solution, however they will affect the indirect benefits, as the benefits will be maximised in outcome where the CC Solution is delivered and effective in terms of efficacy and consumer uptake. As such, the assumption for indirect benefits analysis is that there are minimal delays and delivery of these proceeds as expected.
- 2.57 These assumptions do not affect the analysis of the direct costs, indirect industry costs, or the direct benefits of this analysis. For clarity, we have included a section calculating the BCR in the event these assumptions prove erroneous, and that the IA must rely only on direct benefits, and both sets of costs.
- 2.58 We have based the calculations of this IA on the further assumptions that the uptake of the service is within the parameters as stated in paragraphs 2.30 and 2.31. These assumptions were based upon RECCo analysis, and the Ofgem Consumer Archetypes with any 'early adopter' cohorts intentionally discounted to prevent the risk of 'double-counting' in our assumptions.
- 2.59 Another assumption is that the rates of opt-out for the MHHS will fulfil the expectations of the MHHS IAs. Similar to paragraph 2.64, this assumption is predicated on the calculations of previous analysis. In the event of higher opt-out rates for non-settlement uses of Half Hourly data, all calculations would be graded from effective non-delivery to as expected ranges. As such, there is no practical way to test these assumptions through the BCR calculations. As covered in paragraph 2.63, we have included 'worst case' non-delivery calculations which would be more pessimistic than this outcome, to ensure the worst-case scenario is assessed.

Uncertainties - Risk Analysis

- 2.60 The risk analysis seeks to assess the implications of uncertainty in the assumptions underpinning the CBA. We have provided a range to attempt to quantify the uncertainty in the expected costs.
- 2.61 With regards to the benefits case, we have created a range of four scenarios based upon uptake (low/high) and bill reduction (low/high) giving as much granularity to our predicted outcomes as is practicable. While the uptake and bill reduction variables are to a degree out of the control of the programme, we anticipate a well-designed and comprehensive consumer information and engagement strategy will optimise the uptake.

⁶⁶ Clean Flexibility Roadmap

⁶⁷ Clean Power 2030 Action Plan - GOV.UK

⁶⁸ Clean Power 2030 - NESO

OFFICIAL

Impact assessment Consumer Consent

2.62 On the benefits side, we have sought to reduce the uncertainty by counting the minimum possible contribution to each initiative by the CC Solution and seeking to take the lowest benefits case from each previous IA, in order to calculate BCR based on the 'worst case scenario' in each case. By doing this, we sought to counter optimism bias in the calculations. Following this course, we have included BCR calculations on the basis of effective non-delivery for every initiative which the CC Solution could benefit, in order to assess the economic case for the CC Solution in isolation, without considering any of the multiple initiatives which it is expected to enable.

3. Analysis – Quantitative and Qualitative

Section summary

This section covers Ofgem's analysis of the findings we have developed on costs and benefits and presents several scenarios testing our assumptions to better understand when the benefits accrued by this proposed policy decision outweigh the costs. This section is broken down into two parts, the CBA, which works out the overall costs against benefits to develop a Benefit to Cost Ratio (BCR), and a Break Even Point (BEP) analysis.

Monetised Cost Benefit Analysis (CBA)

3.1 The factual scenario of this IA is wherein the decision reached by Ofgem in April 2025 takes place – and RECCo Ltd delivers a technical solution to Consumer Consent following the timelines initially set out in the April 2025 decision and now refined through working groups to release the MMP on 31 March 2027. We have, in the previous section, calculated costs and benefits, and outlined the assumptions we made and sources we relied upon in garnering these figures.

Costs analysis

Table 3.1 – Weighted comparisons with projects already costed.

Project	Industry IT Transitional Costs	Industry IT Ongoing Annual Costs	Percentage weighting for CC Solution
MHHS ⁶⁹	£93.6m (2019£, undiscounted)	£14.9m (2019£, undiscounted)	11%-17%
Open Banking ⁷⁰	Accreditation & Onboarding at £2.9m per credentialled entity (2020£, undiscounted)	£600,000 per credentialled entity (2020£, undiscounted)	17% - 26%
Consumer	£10.3m – £15.9m	£1.6m - £2.5m	
Consent (MHHS	(2019£,	(2019£,	
Comparison)	undiscounted)	undiscounted)	

⁶⁹ MHHS Final Impact Assessment

⁷⁰ Implementation of the revised EU Payment Services Directive (PSDII) - GOV.UK

Consumer	£10.4m – £15.8m	£2.1m - £3.2m	(treated as average
Consent (OB	(2020£,	(2020£,	cost for 21 UK
Comparison)	undiscounted)	undiscounted)	licensed Suppliers –
			totalled for
			comparisons)

- 3.2 The estimated percentages from the table above were based on the discussions in industry working groups, and initial drafts of RECCo's design of the solution for the technical specifications compared to the costings for overall industry alignment with MHHS and OB. This necessitated a range of percentages as the comparisons cannot be like-for-like.
- 3.3 In the case of OB, the role of incumbent banks, those under the direction from the Competition and Markets Authority known as CMA9, was more resource and thus cost-intensive especially during the initial creation and deployment of OBIE. These costs had no parallel for the CC Solution and were discounted. The delineation between incumbent banks and incomers does not have a parallel with energy suppliers. Initial consideration for separating the 'Big Six' suppliers was considered and discounted as not analogous. Given the focus on consumer energy data, the closest parallel is with energy suppliers as the incumbents, and Third-Party Intermediaries (TPIs), such as load controllers, innovators, Price Comparison Websites (PCWs), and others who seek to access consumer energy data acting as incomers.
- 3.4 Following this analysis, we have calculated indicative industry costs for the CC Solution as follows;

Table 3.2 – Total estimated costs – RECCO indicative design costs and estimated industry costs with confidence ratings.

Consumer Consent	Initial set-up costs	5-Year enduring service delivery Costs	Yearly running costs	Confidence rating
Industry Costs	£10.3m- £15.9m	N/A	£1.6m - £2.5m	Medium
RECCo design and deployment costs	£7m-£8.5m	£10.75m - £17.25m	£3.6m - £4.8m	High

Total Costs	£17.3m - £24.4m	£10.75m - £17.25m	£5.2m - £7.3m	Medium-High	
-------------	--------------------	----------------------	---------------	-------------	--

3.5 These costs, coupled with the costs incurred by RECCo for the design, deployment, and running of the CC Solution leave a total indicative cost range of £17.3m - £24.4m for the years 2025-2027, then the five years of enduring development costs, predicted to be between £10.75m to £17.25m, followed by a yearly operating cost range of £5.2m - £7.3m. These costs will form the basis of the BCR to calculate the break-even point, and the Benefit-Cost Ratio calculations of the CBA found in paragraph 3.27-3.28.

Benefits Analysis - Direct

- 3.6 The ranges of directly attributable benefits give a necessarily wide range of outcomes, which we detail in the analysis in Section 3. These scenarios were calculated as follows;
 - Low Uptake, Low Saving Scenario. Herein we calculated the number of consumers who would engage with the CC Solution, based on the lower bound Uptake assumption and the number of consumers in each archetype, then multiplied this figure by the lower bound of Savings assumptions to reach a total GBP value.
 - Low Uptake, High Saving Scenario. Herein we calculated the number of consumers who would engage with the CC Solution, based on the lower bound Uptake assumption and the number of consumers in each archetype, then multiplied this figure by the higher bound of Savings assumptions to reach a total GBP value.
 - High Uptake, Low Saving Scenario. Herein we calculated the number of consumers who would engage with the CC Solution, based on the higher bound Uptake assumption and the number of consumers in each archetype, then multiplied this figure by the lower bound of Savings assumptions to reach a total GBP value.
 - High Uptake, High Saving Scenario. Herein we calculated the number of consumers who would engage with the CC Solution, based on the higher bound Uptake assumption and the number of consumers in each archetype, then multiplied this figure by the higher bound of Savings assumptions to reach a total GBP value.

Table 3.3 – Grid view of the total savings on bills based on cohort size and the four mapped scenarios

		Uptake - Low	Uptake - High
A1	Saving Low	£101,208	£404,833
A1	Saving High	£404,833	£578,333
A2	Saving Low	£1,953,430	£3,125,488
A2	Saving High	£3,472,764	£5,556,422
A3	Saving Low	£353,365	£4,424,474
A3	Saving High	£706,730	£1,722,655
B4	Saving Low	£804,450	£4,424,474
B4	Saving High	£1,389,504	£7,642,273
B5	Saving Low	£372,230	£744,461
B5	Saving High	£558,346	£1,116,691
C9	Saving Low	£2,045,108	£20,451,084
C9	Saving High	£3,408,514	£34,085,140
D10	Saving Low	£814,762	£1,629,524
D10	Saving High	£1,513,130	£3,026,260
D12	Saving Low	£583,132	£5,248,184
D12	Saving High	£874,697	£7,872,277
G17	Saving Low	£293,699	£734,247
G17	Saving High	£538,448	£1,346,120
G18	Saving Low	£1,335,672	£3,339,180
G18	Saving High	£2,270,642	£5,676,606
H19	Saving Low	£202,714	£810,854
H19	Saving High	£287,178	£1,148,710

3.7 These results can be tabulated across the archetypes which were included in this IA to show the following;

Table 3.4 – Grid view of the total UK savings on bills based on the four mapped scenario

UK Totals	Annual Benefits in £ (2024)
Low Uptake, Low Saving	£8.9m
Low Uptake, High Saving	£15.4m
High Uptake, Low Saving	£45.3m
High Uptake, High Saving	£69.8m

- 3.8 While there is considerable variation across the scenarios, the mean average value has been calculated at £34.9m. This calculation, however, must be viewed in the light of the considerable variation between the high uptake and low uptake scenarios. The expected benefits for the Low Uptake, High Saving scenario is one third of the value of the High Uptake, Low Saving scenario. From this, we can see that the value of the CC Solution increases considerably with greater uptake. This finding will inform the consumer engagement and consumer information strategies.
- 3.9 Clear, consistent, and unmistakeable public communication with a uniform message will be required for the success of the platform and its interaction with consumers to drive adoption rates. The success hinges on making the offering as simple and attractive as possible. Scepticism and confusion will rapidly erode any confidence and adoption of the platform.
- 3.10 Given how critical the importance of consumer engagement and understanding of the CC Solution, we would propose to increase allowance for spending on consumer information and brand design to ensure the best conditions for early and comprehensive adoption of the CC Solution.
- 3.11 In addition, the benefits have been calculated as a percentage of average income for each archetype, and there is proportionally greater benefit accrued to those in lower income deciles. This is coupled with the deliberate discounting of those deemed as early adopters in the archetypes of the purpose of calculating benefits. The analysis shows that those who have least will benefit most from the CC Solution.
- 3.12 Overall, flexibility to the energy system which will be enabled by the CC Solution will benefit those who choose not to share energy data. While we do not consider this a direct benefit, we analyse the predicted benefit for the system as a whole, even for consumers who choose not to share their data either through the CC Solution, or other consent management approaches in the Indirect Benefits section.

- 3.13 With regards the hard-to-monetise benefits, there is scope for the CC Solution to provide a 'refresh' for a number of living labs around the country. Living Labs are toolkits used in academia and by innovators to test products, initiatives, and projects under real world conditions. There is research that a number of the cohorts of living lab data sets i.e. the data flows from individual smart meters which can be accessed by academics are from early adopters for the smart meter programme, rather than more recent adopters of smart meters, which runs the risk of skewing data. This has to be manually compensated for. The CC Solution will provide the opportunity to refresh these datasets, with concomitant benefits in terms of academic accuracy and more timely data. The benefits of these projects are challenging to calculate a direct financial benefit, even as a range.
- 3.14 Another hard-to-monetise direct benefit is considered to be the greater scope for consented data to be used to identify and work to alleviate fuel poverty. There are an estimated 6.7m households in the UK defined as being 'fuel poor', which represents 24% of all households.⁷² The majority of households defined as 'fuel poor' have multiple intersectional financial difficulties, such as council tax arrears, rent/housing arrears, or other debts which cannot be easily reconciled due to the multiple consents to grant to multiple data holders.
- 3.15 While the CC Solution will not be a panacea for these issues, it has been designed to create a framework which is scalable within and without the energy sector and has been designed to contribute to the mitigation of these. Having a standardised way to grant consent in the energy sector will facilitate work across other sectors, such as social housing, water, telecoms, and more.⁷³ The is potential for the CC Solution to create a template for other sectors to follow, increasing standardisation and interoperability for future Smart Data Schemes across sectors, however that is outside the scope of this IA.⁷⁴

Table 3.5 – distribution of benefits through bill reductions calculated for the CC Solution

Archetype	Household Income	Lower Reduction	Lower Benefit as percentage	Upper reduction	Upper Benefit as percentage	Midpoint Reduction	Midpoint as a percentage
A1	£15,643	£35	0.22%	£50	0.32%	£42.50	0.27%
A2	£17,327	£45	0.26%	£80	0.46%	£62.50	0.36%
A3	£18,195	£40	0.22%	£65	0.36%	£52.50	0.29%

⁷¹ Home | Living Lab

^{72 &}lt;u>Using smart meter system data for public good | Smart DCC</u>

⁷³ Smarter regulation: delivering a regulatory environment for innovation, investment and growth

⁷⁴ CDEI and DBT smart data research - GOV.UK

B4	£18,776	£55	0.29%	£95	0.51%	£75.00	0.40%
B5	£22,423	£40	0.18%	£60	0.27%	£50.00	0.22%
C9	£32,344	£60	0.19%	£100	0.31%	£80.00	0.25%
D10	£31,819	£35	0.11%	£65	0.20%	£50.00	0.16%
D12	£38,927	£40	0.10%	£60	0.15%	£50.00	0.13%
G17	£44,586	£90	0.20%	£165	0.37%	£127.50	0.29%
G18	£49,265	£100	0.20%	£170	0.35%	£135.00	0.27%
H19	£52,924	£60	0.11%	£85	0.16%	£72.50	0.14%
Averages	£31,112	£55	0.19%	£90	0.31%	£73	0.25%

- 3.16 Table 3.5 shows the predicted benefits through bill reductions as a percentage of average household income for each archetype. These were calculated for the upper and lower bounds of the range, as well as the median point. The average income was calculated, and those archetypes receiving greater benefit by proportion of income than average were shaded green with the text in bold for accessibility, those receiving less than the average as a proportion of income were shaded red, with text in italics for accessibility.
- 3.17 It is of note that the distribution of benefits through bill reduction is not neutral. As the table above shows, the bill reductions are broadly distributed progressively as a proportion of total household income, with the exception of the G17 and G18 archetypes, which consist of 'unconventional and rural housing in upper income deciles. These archetypes represent 831,002 households, or approximately 3% of UK consumers.
- 3.18 With this considered, we are confident in predicting that the benefits of this policy position will be distributed progressively.

Benefits Analysis - Indirect

Flexibility Markets

3.19 Based upon the expected increased uptake the reduced friction of the CC Solution, we have considered the cost saving to be two orders of magnitude less than the overall reduction in system costs through reducing generation build and system build described above.

Table 3.6 – showing overall reduction in costs of system build achieved by flexibility and percentage enabled by CC Solution

Reduction of system costs – 2025 to 2050	Yearly cost reduction	Percentage attributable to CC Solution	Benefit attributable to CC Solution
£40-£50bn ⁷⁵	£1.6-£2bn	1%	£16-£20m

- 3.20 This analysis shows the claimed benefit from this solution as £400m-£500m in the years leading up to 2050; meaning an expected annual benefit of £16m-£20m.
- 3.21 These calculations are based on the reduced system costs, meaning they are not direct benefit to individual consumers, unlike the previous analysis of direct benefits in paragraphs 2.31-2.32. These benefits will be 'smeared' equally across all consumers through reduced transmission, distribution and generation costs. As a result, the gains are not proportionally progressive by income decile, as the direct benefits are described in paragraph 2.32. Consequently, we are not weighting the benefits in the same way but treating as equal benefit across all households.

Smart Meter Rollout

3.22 Using figures from the most recent Smart Meter Rollout IA, we have collated the following table;⁷⁶

Table 3.7 – Total benefits from Smart Meter Rollout 2019

ID	Named Benefit	Value (£m)	Removed from consideration as previously counted
1	Consumer Benefits	£7,623m	Yes, in paragraph 3.6 – 3.15
2	Supplier Benefits	£8,071m	No
3	Demand Shifting Benefits	£1,363m	Yes, in paragraph 3.19 - 3.21
4	Network Benefits	£374m	Yes, in paragraph 3.19 - 3.21
5	Carbon and Air Quality	£2,026m	No.
	Benefits		

- 3.23 The CC Solution will have the greatest benefits for consumers and the system through the enabling of flexibility service providers, and these benefits have already been addressed in previous analyses. To avoid double counting these will not be added to the current analysis.
- 3.24 However, benefit 2 and 5 Supplier and Carbon and Air Quality Benefits have not been considered. Similar to the enabling of flexibility services provision, we had

⁷⁵ Taken from ENSF from DESNZ - <u>Electricity networks strategic framework - GOV.UK</u>

⁷⁶ Smart meter roll-out: cost-benefit analysis 2019 - GOV.UK

assumed a baseline of two orders of magnitude smaller, meaning 1% of accrued value. In the case of Supplier Benefits, we acknowledge that many suppliers have existing routes to establish consent from their own customers and so will realise less benefit from the CC Solution. As such, our assumption is that we reduced the benefit by a further order of magnitude.

Table 3.8 – Counted benefits from Smart Meter Rollout 2019 accruable to CC Solution

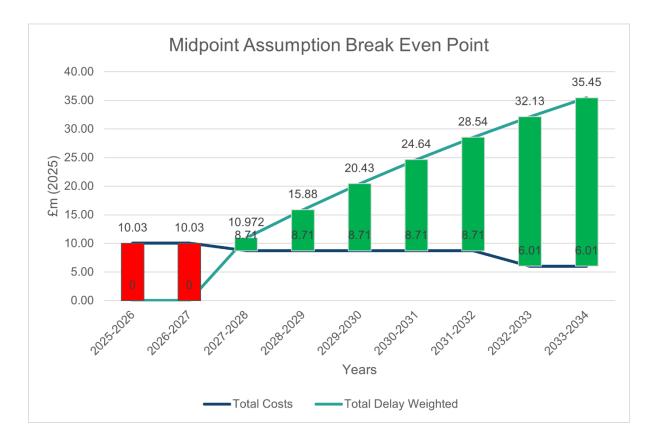
Benefit	Value	Percentage Accrued to CC Solution	Value Accrued to CC Solution
Supplier Benefits	£8,071m	0.1%	£8.1m
Carbon and Air Quality Benefits	£2,026m	1%	£20m

- 3.25 On this basis, we can assign £28.1m of direct benefit from the greater uptake of smart meter rollout to the reduced friction and increased enabling of the CC Solution. This figure is, however, across the lifetime of the smart meter rollout, rather than on an annual basis. While the adoption of smart meters by consumers has been accelerating, there are signs of slowing in recent years. In order to simplify the IA, we will not ascribe an annual value for this figure. ⁷⁷
- 3.26 Due to the future-looking nature of this analysis and the inherent unpredictability of the transitional period of the energy system, all costs and benefits have been recorded as ranges. Both the CBA and Break-Even Point (BEP) have been calculated according to three potential scenarios;
 - Average or expected scenario Industry costs and solution development and
 operational costs are based upon the midpoint figure for each range. The direct
 benefits are based on the midpoint of the High/Low Uptake and High/Low
 Savings range, and the indirect benefits are calculated on the midpoint of the
 range, sharing delivery assumptions with those existing IAs.
 - Worst case scenario Industry costs and solution development and operational costs are based upon the highest figures for each range. The direct benefits are based on the Low Uptake and Low Savings range, and the indirect benefits are calculated 20% of the lowest range, based on effective non-delivery assumptions contained in those existing IAs.

⁷⁷ <u>Delayed smart meter programme fails to hit targets and secure public support - Committees - UK Parliament</u>

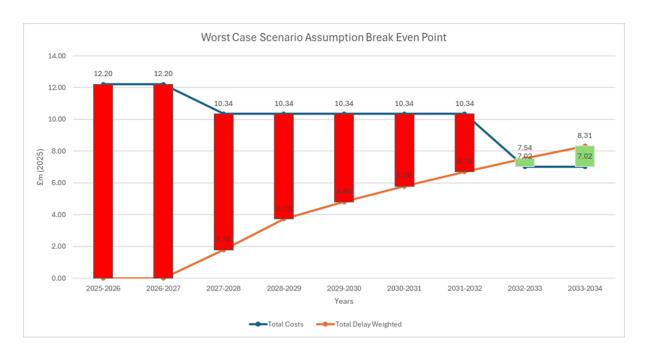
- Best case scenario Industry costs and solution development and operational
 costs are based upon the lowest figure for each range. The direct benefits are
 based on the High Uptake and High Savings range, and the indirect benefits are
 calculated on the highest of the range, sharing delivery assumptions with those
 existing IAs.
- 3.27 For the CBA we are intending to create a Benefits to Costs Ratio (BCR) for each scenario. This will calculate the total expected cost and benefit. It was considered to limit this time period from 2025-2033 in line with the Clean Power Plan with a three-year margin to demonstrate functionality following the 2030 deadline, however the CC Solution is intended to be an enduring feature of the energy sector and will continue past 2030, meaning we have intentionally not time-bound the analysis.

Table 3.9 – Analysis of BCR for three scenarios


Summary of options	Benefits	Costs	BCR	Key considerations
Average or expected scenario	£345.92m	£75.61m	4.58	Scenario described in para 3.26
Worst case scenario	£77.23m	£90.15m	0.85	Scenario described in para 3.26
Best case scenario	£564.38m	£62m	9.10	Scenario described in para 3.26

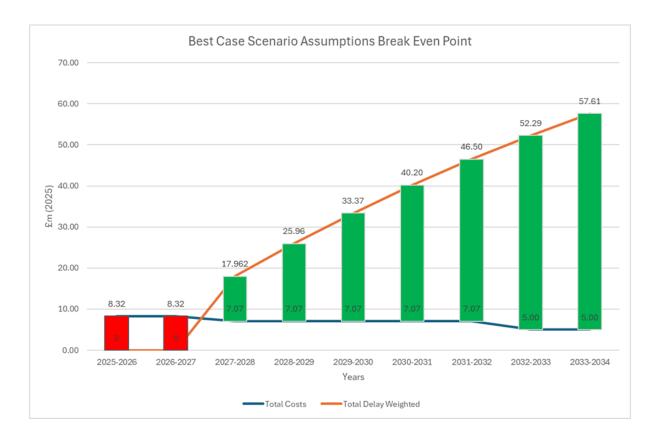
Monetised Break-Even Point (BEP) Analysis

3.28 Similar to the CBA and BCR we have, in the previous section, calculated costs and benefits, and outlined the assumptions we made and sources we relied upon in garnering these figures. These have been broken down into the three scenarios covered in paragraph 3.26. In order to calculate the Break-Even Point (BEP), we have added the aspect of time to these calculations. Necessarily, we considered the aspect of speed of uptake, in addition to the High/Low Uptake scenarios described in paragraph 2.31 & 2.32.


- 3.29 In order to account for staggered take-up of the CC Solution, we initially calculated the total benefits direct and indirect and weighted them at 20% for the first year, with a 10% increase in measured benefit for each subsequent year. This ensures that modelling reflects the time delay expected.
- 3.30 Benefits were taken from September 2025 prices, with inflation accounted for via CPI NPV. Cost calculations were similarly inflation weighted. All other assumptions have been detailed in the previous section of this IA.
- 3.31 Mid-point Assumption. This is considered the most likely scenario. Herein, costs fall in the mid-point of the expected range, as do benefits. Benefits accrued to the CC Solution from indirect source are calculated from the mid-point of the initiatives and policy positions upon which they are predicated, and the assumptions that delivery is within expected parameters are fulfilled.

Graph 3.10 - Midpoint Assumption Break Even Point

- 3.32 As the graph shows, the BEP for this scenario is in year four, 2028-2029. At this point, the CC Solution MMP is delivered and working as expected. From 2029 onwards the CC Solution will be generating benefits greater than its costs in this scenario, deemed the most likely on the basis of the assumptions we have listed previously and costings and benefits analysis we have obtained and conducted.
- 3.33 Expected 'worst case' of cost and benefits for Break Even Calculation This scenario is based on a Low Uptake, Low Savings range for the direct consumer


benefits, solution and industry costs being as high as they could be, and the initiatives and policy positions which generate indirect benefits only delivering 20% of the value expected in their respective IAs. This is the most expensive, least beneficial outcome, and is considered less likely based on the risk and assumption calculations.

Graph 3.11 – Worst Case Scenario Assumption Break Even Point

- 3.34 As the graph shows, the BEP for this scenario is in year eight, 2032-2033. Costs are considerably higher in this scenario, and the low indirect benefits, coupled with the Low Uptake, Low Savings direct benefits means that there is considerable outlay before the CC Solution has greater benefit than costs. In this worst-case scenario, however, the BCR is 0.85, and the Solution would not see greater benefit than cost during the evaluation period of 2025-2023, but would be trending towards greater benefit than cost in the future.
- 3.35 Expected 'best case' of cost and benefits for Break Even Calculation, as described in paragraph 3.26, this is the modelling when costs are at the lowest of predicted ranges, and benefits are at their highest, and all initiatives which underpin the indirect benefits case delivery at expected levels. We did consider modelling for over delivery of expected indirect benefits but discounted this as presenting a risk of optimism bias. This scenario is predicated on the High Uptake, High Savings direct benefit outcomes.

Graph 3.12 – Best Case Scenario Assumption Break Even Point

3.36 In this scenario the CC Solution has a BEP of year three, 2027-2028. The modelling is similar in pattern to the expected, midpoint outcome, however the scale of predicted benefits is substantially higher, with commensurately higher BCR.

Hard to Monetise Cost Benefit Analysis

- 3.37 The key aims of the CC Solution were to increase the power and control consumers have over the data they generate, to make it easier for them to share that data for the good of the whole system and to derive that value, and to decrease the informational asymmetry of smart meter data among participants in the energy sector.
- 3.38 These aims are challenging to ascribe a monetary value to, however merit analysis in any understanding of the impact of this proposed policy positions. Firstly, consumer empowerment and consumer engagement; when consumers feel in control, that increases willingness to try new approaches to energy use and will bring hard to engage consumers into the sphere of flexibility and allow for tailored support for vulnerable consumers. Recent instability in the energy markets following the Russia/Ukraine war has left many consumers feeling disempowered when it comes to their energy bills, and this effect is only now beginning to recede, as reflected by consumer surveys.⁷⁸ When consumers have greater choice in who

⁷⁸ Energy Consumer Satisfaction Survey: January 2025 | Ofgem

- sees and who uses their energy data, satisfaction is likely to rise in lockstep with the sense of control.
- 3.39 Sharing smart meter data has historically been carefully controlled and almost exclusively done through express and informed consent. While the Data Use and Access Act allows for some limited aspects of 'public good' purposes for processing the data, we do not anticipate large scale 'opening up' of this data without consumer consent, nor would we consider that an appropriate avenue. When a consumer chooses to share their data, the value to the system that is derived from the use of that data ought to accrue to the consumer. This value exchange is intended to be both directly, through bill reduction and indirectly, through whole system efficiencies, synergies, and improvements which will lower costs as a whole.
- 3.40 As covered in paragraphs 3.15 to 3.18, this policy proposal has been analysed as benefiting consumers progressively. This means that the those with the least benefit the most, broadly. While the specific monetised benefits are detailed above, there is a hard-to-monetise benefit to a specifically and intentionally progressive policy which brings greatest yield to those least fortunate. There have been concerns that the energy transition is regressive, in that it risks bringing lower bills and benefits to those able to afford the upfront costs of heat pumps, EVs, and flexibility in their demand, while neglecting consumers who cannot afford the investment in low carbon technologies. The CC Solution aims to address this by 'levelling the playing field'.

Other Direct Benefits

- 3.41 There are a number of other direct benefits which have not been quantified in the analysis relating to synergies or efficiencies across the wider system besides purely consumer related aspects. Better understanding of demand through shared consumption data will give more granular understanding of demand than the existing aggregated smart meter data provided by networks under Data Best Practice. This additional granularity will provide clarity for day-to-day control room operation, and for requirements and locations of generation build. This clarity will allow greater certainty for investors and provide data to underpin investment strategies.
- 3.42 This increased use of, and value derived from, data and its increasing granularity, however, is part of an ongoing direction of travel in the energy sector, as part of digitalisation work. It is challenging to attribute value of this increasing visibility to one particular workstream, so we have discounted it as part of this analysis.
- 3.43 In addition, it is expected that there will be secondary and tertiary benefits which are outside the scope of this analysis. These may include a growth in third parties

⁷⁹ Data (Use and Access) Act factsheet: UK GDPR and DPA - GOV.UK

and innovators finding heretofore unanticipated uses for smart meter data. We would expect to see novel interactions with the expected sources of flexibility and demand/load shifting – such as heat pumps, EVs, storage heaters and similar, but given the growth of smart appliances and innovative products to manage the data from these, we anticipate the market to innovate towards greater granularity, all of which will be facilitated and enabled by a clear, trusted, and consistent consent management system.

Risk Analysis

- 3.44 Any assessment of future impacts has uncertainty. This policy position has the additional uncertainty of being relatively novel including the deployment of a bespoke technical solution. In seeking to hedge that uncertainty, the design of the solution has been planned to avoid novel or 'cutting-edge' technology, and to rely on reuses of proven technology and proven governance where practicable. Even with this approach, there are ranges of uncertainty. In order to address this, we have calculated for the three scenarios as above and progressed the direct benefits analysis on a grid of High/Low Uptake and High/Low Savings.
- 3.45 The CC Solution is intended as a facilitator and enabler for a number of different data and digitalisation initiatives across the energy system aimed at increasing flexibility, improving visibility of the network from generator to consumer, and using data to drive efficiencies. This analysis has necessarily assumed value derived from these in calculating the benefits of the CC Solution. The worst-case scenario is predicated on all of these initiatives failing to deliver, in conjunction with high costs and low direct benefits. For this outcome to occur, it would represent a near total non-delivery of the drive toward the decentralised, low carbon energy system, with multiple interlinked projects across government, Ofgem and industry to fail simultaneously.
- 3.46 Additional assumptions which underpinned the Impact assessment were the uptake figures. To counter optimism bias, we included High and Low Uptake scenarios, and time-delayed the uptake in modelling, based on previous examples, mainly the uptake for OB. Herein the uncertainty comes for the engagement and design of consumer information for the CC Solution. We have considerable lessons to learn from previous efforts to engage with consumers, and this is underpinning our thinking, which gives a degree of confidence in the assumptions we have made.
- 3.47 For all uptake, our assumptions regarding uptake have stayed on the lower end of OB, which currently stands at 13.3m users in the UK, and was tailored according to the characteristics of each archetype from the Ofgem Consumer Archetypes.⁸⁰ Using these to underpin, we have confidence that, if buoyed with a suitable

⁸⁰ OBL Impact Report 7: open banking delivers real-world impact as adoption accelerates year-onyear - Open Banking

- consumer information campaign and learning the lessons from OB and the smart meter rollout, these predictions can be relied on with medium/high confidence.
- 3.48 With regarding the solution costs, these figures have been taken directly from RECCo's business plans, meaning we have high confidence in them. There is further detail and greater granularity of the costing which Ofgem has access to, but we have decided not to include in the scope of this Impact Assessment as their publication would potentially create a competitive advantage for companies bidding of future roles during RECCo procurement rounds.
- 3.49 Industry costs are based on previous projects with similar requirements in terms of IT development and consumer interaction; albeit at significantly greater scale. We have drawn comparisons and worked from existing figures to increase confidence in the reliability of indicative figures.
- 3.50 In summary, the risk analysis indicates that only under extreme conditions, such as multiple interlinked projects significantly under delivering, low uptake and low savings outcomes for the CC Solution, and the highest indicative costs, would the policy's cost outweigh its benefits. It is understood to be improbable for all these conditions to occur simultaneously.

Other Impacts

- 3.51 Ofgem is under a statutory duty to conduct an Impact Assessment when an important change is proposed. ⁸¹ This proposed policy was not deemed to meet the criteria for 'importance' due to the not qualifying as having a significant impact on persons engaged in the generation, transmission, distribution or supply of electricity. However, on the basis of the potential impacts on the energy sector, and the impact on consumers, we committed to conduct an IA.
- 3.52 Ofgem IA Guidance specifies additional considerations such as distributional impacts on consumers, biodiversity, growth, Net Zero and Public Sector Equality Duty (PSED). In this section, we consider the other potential impacts arising from this policy decision.⁸²

Impacts on Network and Systems

3.53 By increasing the consumer led flexibility inherent in the system through reduced friction of data-sharing, the CC Solution facilitates and enables the drive towards less requirement for system build. While managing and balancing the network will, necessarily, become more complicated as part of the decentralised future, the flexibility made possible by CC Solution will allow the network reinforcement needed to decarbonise safely is conducted in the lowest-cost manner possible.

⁸¹ Section 5A of the Utilities Act 2000

⁸² Impact assessment guidance | Ofgem

3.54 In addition to these benefits, we consider that the CC Solution, in conjunction with the smart meter data repository proposed by Elexon, has the potential to map demand data in a more granular way with less assumptions which will allow more data-driven decision making for both grid connections and system management.

Impacts on the Environment and Net Zero

- 3.55 This policy position facilitates and enables flexibility and the increased adoption of Low Carbon Technologies (LCTs). Both of these are key planks in the Clean Power Plan, and critical components of the ambition to reach a stable, low carbon power system at the lowest cost.
- 3.56 This facilitation will apply only to domestic smart meter-using consumers in the MMP stage, as non-domestic customers and customers using advanced meters (AM) were deemed out of scope of the initial development. However, subsequent iterations of the Solution, as costed for in the 5 year enduring design and delivery in paragraph 2.17 2.19, are intended to expand to non-domestic consumption.

Impacts on Growth

- 3.57 In addition to supporting existing data-driven businesses, this policy will reduce the friction in obtaining consent for the use of consumer energy data, which is expected to enable new businesses and innovation to deliver novel technologies and services to drive growth as detailed in the Flexibility Roadmap.⁸³ The nascent flexibility market will see reduced friction and more standardised consent management encouraging growth.
- 3.58 In addition to this policy proposal fulfilling Ofgem's growth duty by supporting positive growth across the energy and ancillary sectors, there is scope for the CC Solution to provide a template for development into other sectors with similar potential for smart data schemes, as highlighted in the recent DESNZ Call for Input.⁸⁴ The impact of such schemes is outside the scope of this IA, however expected to be broadly net-positive in growth terms.
- 3.59 At a more fundamental level, the design and development of the solution, as planned by RECCo, is based around procuring services from external providers, creating growth in data and technology-adjacent service providers.

Public Sector Equality Duty

3.60 Under the Equality Act 2010, Ofgem, as a public authority, is required to have due regard to factors set out in the act in respect of persons who share relevant characteristics.^{28,29} In our view, age and disability appear to be the most likely

⁸³ Clean flexibility roadmap - GOV.UK

⁸⁴ Developing an energy smart data scheme – GOV.UK

relevant protected characteristics of persons who could potentially experience digital disadvantaged and be impacted by this policy proposal. In light of this, we considered the potential challenges and impacts and worked with groups specialising in digital disadvantage to consider mitigations to these challenges. Our work in this area will continue to develop until a decision has been made.

Monitoring and evaluation

3.61 The monitoring and evaluation of this proposed policy will be conducted by way of a review of effectiveness and efficiency compared to stated aims in Summer/Autumn 2028. This time period has been chosen to test the MMP, following delivery and bedding in period. Evaluation design will be based on Magenta Book principles.⁸⁵

Success criteria for evaluation

- 3.62 The key objective of the CC Solution is to empower consumers with low friction control over who can access and use their energy data and enable greater utility of that data for the good of the whole system.
- 3.63 In the first instance, this would be measured by engagement metrics and through consumer engagement. These metrics will be available as part of the digital solution. In the first instance, we will ensure the solution captures;
 - Numbers of consumers granting consent
 - Numbers as a percentage of total consumers
 - Frequency of data sharing
 - Purposes of data sharing
 - 'Repeat customers' using the solution for multiple purposes
 - Numbers of consent seekers and their roles in the energy sector
- 3.64 For the greater utility of energy data and the improvement of decentralisation, the objectives held in the Clean Power Plan would be considered the first success criteria, with others being developed by Ofgem and RECCo across the life of the project.
- 3.65 These success criteria would need to be contrasted with the counterfactual scenario and would require that measured benefits have clear attribution to the CC Solution. Rigour in assessing causation as opposed to correlation will be a key part of the monitoring process and will require control for variables. While we will not be able to have active validation of the counterfactual, we will model based against best understanding of this.

-

⁸⁵ The Magenta Book - GOV.UK

3.66 The monitoring framework will also need to account for secondary objectives, including the facilitation of net zero objectives and reduction of carbon. In addition, monitoring will compare the required network build in a CC Solution-enabled world to modelling conducted by NESO and DESNZ covering the additional network build required in world without enabled flexibility.

Potential negative outcomes to monitor

- 3.67 In terms of negative outcomes, the primary potential negative outcome to monitor for would be low uptake. Engagement metrics will be key in understanding this risk, which is intended to be mitigated through consumer information and engagement. If the CC Solution is not trusted, or not adopted by consumers, the effectiveness of the proposed policy will be sharply reduced.
- 3.68 Secondary to this, a potential negative outcome would be that we have underestimated costs. During development, there is a clear governance and performance management framework through the RECCo Performance Assurance Framework (PAF) and Steering Committee, as well as Ofgem oversight. However, the cost to industry has been necessarily estimated. Monitoring will continue to engage with industry, particularly supply licensees, to understand these costs.
- 3.69 We will consider the most suitable cadence and method of obtaining this information, whether through existing retail monitoring, or a bespoke group or Request For Information (RFI). Current thinking is that existing monitoring could be adapted to reduce the regulatory burden that would come from a bespoke RFI. We will agree the most suitably way of examining and recording costs to industry in collaboration with supply licensees as part of the forthcoming consultations on amending supply licences as announced in the Consumer Consent Decision.⁸⁶
- 3.70 A final, and significantly less likely, potential negative outcome is that vulnerabilities or poor design in the CC Solution allows potential bad actors access to consumers or creates sub-optimal outcomes for consumers. The solution has been designed with robust controls and a trust framework with clear access controls underpinning this framework, but it is a potential risk that will be considered in monitoring. During the design stages, we have engaged expertise through the Technical Design and Security Working Groups and have monitoring in place through the RECCo Steering Committee and the Performance Assurance Framework⁸⁷, which is a tested framework familiar to REC users.

Timeline of monitoring

3.71 During development, interim monitoring will be collated through the PAF and costs controlled via the Steering Committee and an Assurance Body which will be

⁸⁶ Consumer Consent decision | Ofgem

⁸⁷ Performance Assurance Framework - REC

OFFICIAL

Impact assessment Consumer Consent

- independent of RECCo and Ofgem to ensure delivery efficiency and report costs. This monitoring will help to inform objectives and risks.
- 3.72 Following deployment of the solution monitoring will align with the reporting and governance functions. These two stages of governance will collect and collate evidence which will feed into the concluding review in Summer/Autumn 2028 which will report on the efficacy of this policy position to Ofgem. More details will be contained in the final IA.

4. Conclusion and next steps

- 4.1 The cost benefit analysis presented for the implementation of the Consumer Consent Solution shows, in the midpoint scenario, expected benefits of £439.58m to expected costs of £78.60m, representing a BCR of 5.59. The alternative scenarios posited and tested through risk analysis showed that even in the worst-case scenario, representing multiple initiative underdelivering, lowest possible uptake and bill reductions, and highest costs, this policy proposal maintains a BCR of 0.86 over the calculated time, however will show on the predicted uptake, net positive benefits outside of this period. In the event of the best-case scenario, the BCR is calculated to be 11.21 over the relevant time period.
- 4.2 Under the worst-case scenario, the CC Solution did not cover its costs until after 2030 and would – in this unlikely scenario – be unlikely to contribute meaningfully to net zero in the relevant time frame. The cost of the CC solution is relatively low in comparison to other initiatives currently aimed at decentralising and decarbonising the energy system, and the potential benefits are significant and progressive in their impact.
- 4.3 In considering the merits of the CC Solution over and above the financial impact it has, and the progressive nature of that impact demonstrated through the distribution analysis, the hard-to-monetise benefits are also significant. Consumers will feel more in control of the data they generate, will feel more able to participate in the energy system, and the generational change currently underway. We are moving from a unidirectional energy system where consumers are passive recipients of energy, to one where a consumer has choices, those choices have an impact, and those impacts have a clear and measurable benefit to both the consumer, and to the wider system.
- 4.4 This analysis of the potential impacts, both positive and negative, of this policy position has endeavoured to weight the likelihood of each outcome and conduct risk analysis to test the assumptions underpinning the calculations. Where appropriate, benefits which could have been counted have been discounted to avoid optimism bias, and stringent applicability criteria have been applied to ensure rigour in analysis.

OFFICIAL

Impact assessment Consumer Consent

Appendices

Index

Appendix	Name of Appendix	Page No.
1	Analysis of previous research	62
2	Consultation Questions	65
3	Analysis of previous IAs	66
4	RECCo Frequently asked Questions	67
5	The Consumer Consent Solution Glossary	67
6	Consumer Consent Digital Newsletters	67

Appendix 1 Analysis of previous research

List of Studies

- Ofgem. (2021). MHHS Final Impact Assessment.
 https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/mhss_final_impact assessment final version for publication 20.04.21 1 0.pdf
- DESNZ, (2022). Smart Meter Roll Out. https://assets.publishing.service.gov.uk/media/5d7f54c4e5274a27c2c6d53 a/smart-meter-roll-out-cost-benefit-analysis-2019.pdf
- Department of Business Innovation & Skills (April 2011). Impact assessment Mi Data.

https://www.legislation.gov.uk/ukia/2013/1048/pdfs/ukia_20131048_en.pdf.

- DESNZ. (2021). Smart Meter Policy Framework Post 2020.
 https://assets.publishing.service.gov.uk/media/60bf3de6d3bf7f4bcc065256/Impact_Assessment.pdf.
- LCP Delta. (2024). Smart Metering Consumer Impact Report. https://www.uregni.gov.uk/files/uregni/documents/2024-10/Smart%20Metering%20Consumer%20Impact%20Study%20Report%202 024.pdf.
- National Audit Office (2018). Rolling Out Smart Meters.
 https://www.nao.org.uk/wp-content/uploads/2018/11/Rolling-out-smart-meters.pdf
- Department of Work and Pensions. (2022). Pensions Dashboards Impact Assessment.

https://www.legislation.gov.uk/ukia/2022/81/pdfs/ukia_20220081_en.pdf.

- Ofgem. (2023). Consumer Impacts Impact Assessment.
 https://www.ofgem.gov.uk/sites/default/files/2023 10/Consumer%20Standards%20-%20Impact%20Assessment%20_0.pdf.
- BEIS.2022. Energy Security Bill Summary Impact Assessment.
 2022-05-30-RPC-5173 1 Energy Security Bill Summary IA 003 .pdf
- DESNZ. (2023). Energy Bill Summary Impact Assessment. https://publications.parliament.uk/pa/bills/cbill/58-03/0295/SummaryImpactAssessment.pdf.

 Ofgem. (2024). Regional Energy Strategic Plan policy framework Draft Impact Assessment.

https://www.ofgem.gov.uk/sites/default/files/2025-02/Consultation-on-RESP-Impact-Assessment.pdf.

- Skidmore, C. (2023). Mission Zero: Independent review of net zero. Department for Business, Energy & Industrial Strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/ attachme nt_data/file/1128689/mission-zero-independent-review.pdf.
- McKinsey Global Institute. (2022). The net zero transition: What it would cost, what it could bring. McKinsey & Company. https://www.mckinsey.com/business functions/sustainability/our-insights/the-net zero-transition-what-it-would-cost-what-it could-bring.
- Baringa Partners LLP. (2019). Future world impact assessment. Energy Networks Association.

https://www.energynetworks.org/assets/images/Resource%20library/ON19-WS3

Baringa%20Future%20World%20Impact%20Assessment%20reportPUBLISHED %20060319.

- Yunusov, Dr Timur., Torriti, Dr Jacopo. (2021). Distributional effects of Time of Use tariffs based on smart meter electricity demand and time use activities. https://research.reading.ac.uk/sbe-news-and-events/wp-content/uploads/sites/122/Unorganized/Distributional_effects_of_tou-FINAL_v2.pdf.
- Ofgem., Pwc. (2020). Energy consumers' experiences and perceptions of smart 'Time of Use' tariffs.

https://www.ofgem.gov.uk/sites/default/files/docs/2020/09/experiences_and_perceptions_of_smart_time_of_use_tariffs_0.pdf.

- US Department of Energy. (2019). Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies. https://www.energy.gov/sites/prod/files/2016/12/f34/CBS_Final_Program_Impact_Report_Draft_20161101_0.pdf.
- Ofgem. (2024). Ofgem energy consumer archetypes update 2024. Centre for Sustainable Energy.

https://www.ofgem.gov.uk/sites/default/files/2024-02/Ofgem_archetypes_update_2024_FinalReport_v4.1.3.pdf.

- White, Alison. (2021) Investigative Report Open Banking.
 https://assets.publishing.service.gov.uk/media/6156c8fee90e071979dfeb2d/Independent_report.pdf.
- Department for Business and Trade. (2024). Regulatory Powers for Smart Data. https://bills.parliament.uk/publications/56550/documents/5223.
- Baker, Kristin. (2022). Open Banking Lessons Learned Review.
 https://assets.publishing.service.gov.uk/media/62908644d3bf7f036ebf5880/C
 MA_OB_Lessons_Learned_Review.pdf.
- DESNZ. (2024). Smart Secure Electricity Systems Programme: Energy Smart Appliances.
 https://assets.publishing.service.gov.uk/media/6659f0147b792ffff71a8601/smart-secure-electricity-systems-2024-energy-smart-appliances-consultation.pdf.
- Energy Systems Catapult. (2022) Energy Data Taskforce Report. https://es.catapult.org.uk/project/energy-digitalisation-taskforce/.
- RECCO. (2025). Business Case. Consumer Consent Service.
 https://www.retailenergycode.co.uk/fs/wp-content/uploads/2025/02/FV-RECCo-Business-Case-2025-Consumer-Consent-Service.pdf.
- WHICH. (2024) Customer Service Counts.
 https://www.which.co.uk/campaigns/customer-service-counts.

Appendix 2 Consultation Questions

Consultation questions

We are interested in hearing stakeholder views in response to the following questions;

- 1. Do you agree that we have to a reasonable degree identified, understood, and described the potential costs and benefits of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution?
- 2. Do you agree that we have to a reasonable degree identified, understood, and described the potential impacts of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution?
- 3. Are there, in your view, any unintended economic consequences of implementing the Consumer Consent Solution with RECCo Ltd delivering the Solution which we have not identified?
- 4. Do you agree with our assumptions and proposed attribution rates for value accrued to the Consumer Consent Solution?

OFFICIAL

Impact assessment Consumer Consent

Appendix 3 Analysis of Previous IAs

Modelling data take from Table 15 and 16 of the

mhss_final_impact_assessment_final_version_for_publication_20.04.21_1 __0.pdf

OFFICIAL

Impact assessment Consumer Consent

Appendix 4 Frequently asked Questions

https://recportal.co.uk/documents/20121/0/Consumer+Consent+Solution+Frequently +Asked+Questions.pdf/b122c5d9-99fa-3f08-a25c-cff4cadd32a1?t=1758196139387&download=true

Appendix 5 Consumer Consent Glossary

https://recportal.co.uk/documents/20121/0/The+Consumer+Consent+Solution+_+Glossary+_+September+2025.pdf/edccfb55-7d23-5504-d833-27ee3efcd8b6?t=1758196172747&download=true

Appendix 6 Consumer Consent Digital Newsletters

Published 08 October 2025
Published 10 September 2025
Published 13 August 2025
Published 16 July 2025