

Internal Only

em

30 August 2022

Glossary

AR	Allocation Round	
BEIS	Broad Measure of Customer Service	
BM	Balancing Mechanism	
CAISO	California Independent System Operator	
CCGT	Combined cycle gas turbine	
CCS	Carbon capture and storage	
CCUS	Carbon capture, utilisation and storage	
CfD	Contract for Difference	
CoC	Cost of Capital	
DSR	Demand Side Response	
DUKES	Digest of UK Energy Statistics	
BORES	c c ,	
ENTSO-E	European Network of Transmission System Operators for Electricity	
ENTSO-E ERCOT	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas	
ENTSO-E ERCOT ESO	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator	
ENTSO-E ERCOT ESO ETYS	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement	
ENTSO-E ERCOT ESO ETYS EV	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement Electric Vehicle	
ENTSO-E ERCOT ESO ETYS EV FERC	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement Electric Vehicle Federal Energy Regulatory Commission	
ENTSO-E ERCOT ESO ETYS EV FERC FES	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement Electric Vehicle Federal Energy Regulatory Commission Future Energy Scenarios	
ENTSO-E ERCOT ESO ETYS EV FERC FES FIT	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement Electric Vehicle Federal Energy Regulatory Commission Future Energy Scenarios Feed-in-Tariff	
ENTSO-E ERCOT ESO ETYS EV FERC FES FIT FTR	European Network of Transmission System Operators for Electricity Electric Reliability Council of Texas Electricity System Operator Electricity Ten Year Statement Electric Vehicle Federal Energy Regulatory Commission Future Energy Scenarios Feed-in-Tariff Financial Transmission Right	

H2	Hydrogen
IC	Interconnector
IESO	Independent Electricity System Operator
IRENA	International Renewable Energy Agency
ISO-NE	Independent System Operator New England
LMP	Locational Marginal Price
LtW	Leading the way
MBIE NZ	Ministry of Business, Innovation and Employment New Zealand
MPs	Market Participants
NOA	Network Option Assessment
NYSO	New York System Operator
PEMMDB	Pan European Market Modelling database
REMA	Review of Electricity Market Arrangements
ROCs	Renewable Obligation Certificate
SPP	Southwest Power Pool
TGCs	Tradable green certificates
TNUoS	Transmission Network Use of System
SPP	Southwest Power Pool
WACC	Weighted Average Cost of Capital
WIP	Work In Progress
WPD	Western Power Distribution

Agenda for today's workshop

Welcome

Re-cap on scope

Since our last session, the UK Government has published its first Review of Electricity Market Arrangements consultation. This considers a wide range of options for updating GB electricity market arrangements to meet our 2035 target – decarbonisation of our power sector by 2035.

Alongside providing advice on the case for change and full suite of options, we are undertaking an assessment of zonal and nodal market design for GB.

Approach

- Identify (i) simplified market designs to model and (ii) how these markets could operate in GB
- 2. Economic modelling to provide a quantitative benefits analysis of different market designs
- 3. Assess likely implementation requirements and costs
- Distributional impact assessment and potential mitigations (and impact on benefits)

Outcomes

System modelling and analysis:

- 1. Supports BEIS decision-making on whether zonal and nodal market design should be short-listed for further consideration
- Advances sector-wide market reform debate and capability in considering reform options

Internal Only

Timeline

Housekeeping

- Focus for today's session is an update on the modelling methodology, presentation of some preliminary results, the cost of capital and liquidity
- Different format to last session presentation and Q&A as opposed to small break-out groups and discussion
- Attendees are welcome to use the chat function for clarification questions we don't plan to respond to questions during the presentations but instead seek to address at the end of each session
- Chatham House Rule if we publish an overview of key discussion points, views will not be attributed
- **Break** at 14:00 for 10 mins

Today's workshop will be delivered by Ofgem's Wholesale Market Reform Team supported by FTI Consulting and ES Catapult

Methodology and assumptions update

Internal Only

In the May workshop, we discussed a range of options for locational granularity and the plausible range of modelling scenarios

OFFICIAL-InternalOnly

· · · COMPASS

G

Today's presentation focuses on a subset of the full quantitative and qualitative impacts of more granular locational pricing

Туре	Effect	Covered today
	Changes in wholesale prices (lower in export-constrained areas and higher in import-constrained areas)	\checkmark
Short-run	Reduced cost of congestion to be borne by consumers	\checkmark
impact	More efficient dispatch across all resource types including flexibility resources	\checkmark
Operationaly	Surplus revenues from congestion rent (and losses)	\checkmark
	Operational impacts from central dispatch system relative to the BM	
Long-run impact (Investment)	Greater price signals to incentivise generation and storage to site at more efficient locations	\checkmark
	Greater price signals to incentivise demand to site at more efficient locations	
	Improved signals for transmission development (due to transparent wholesale prices between different nodes)	
	Changes to CFD payments	
Costs / Other	Other policy interactions	
	ESO system implementation costs	
	Market participant costs	
	Internal Only Changing risk profiles of market participants including financing cost	- aualitativ

<u>**Recap:**</u> Overarching approach is to divide GB market into a number of zones or nodes, overlaid on European market model to assess relevant impacts

Baseline geographical set-up of FTI's power market model

Internal Only

13

Since May we have updated and provided further detail on (1) transmission, (2) demand, and (3) generation capacity assumptions

The evolution of the transmission network is an exogenous input based on ETYS and NOA, and is the same for all market design variants

Our model up to 2031 is currently based on ETYS 21 and incorporates NOA7 (Leading the Way) upgrades for the period 2031-2041.

Π					CON
E	Ν	Е	R	G	Υ

For the zonal model, we have identified appropriate boundaries based on a forward-looking view of future constraints by ESO

OFFICIAL-internationly

Demand projections are based on FES21 LtW, including the flexibility behaviour of different technologies, excluding demand portability

We split customer demand¹ into four components. Total annual demand for each of these components, in each scenario, is set exogenously, using the local demand as defined in FES2021 (GSP demand level)

FES21 Leading the Way - demand forecast (TWh)

B Demand profiles for each of these components are based on the Pan European Market Modelling database (PEMMDB)². These profiles are optimised by the model, using flexibility assumptions developed based on FES21

DSR	 Two tier of DSR included in the model, each of them activated at different price levels Capacity of DSR and price levels are based on FES21
Electric vehicles	 A quarter of EVs optimise demand across ten hours a day day to minimise cost, consuming at times when power is cheapest Remaining 75% of EVs follow a fixed hourly demand profile peaking late at night (i.e. most charging happens overnight)
Heat pumps	 50% of heat pumps optimise demand within each day to minimise cost, with climate profiles varying heating demand across the year The proportion of flexible units follows the proportion of flexible heat pumps units in use according to FES21
Electrolysers	 Electrolyser capacity and annual demand is fixed to FES21 (implying load factors of c.11-31%) The model optimises the demand profile within the year

Demand from the power sector (e.g. battery and pumped storage) is optimised endogenously by the model. The installed capacity of these technologies is fixed to FES21

Internal Only

1: Customer demand excludes demand from the power sector (e.g. power plant own consumption).

2: The PEMMDB is published by ENTSO-E and is the basis of the TYNNDP modelling

Generation capacity forecasts are based on FES21 Leading the Way scenario, and the mix stays the same across market designs

National model assumes capacity follows FES21

- Total generation capacity per technology is based on the FES21 data
- Siting is based on FES21 regional breakdown (at nodal granularity)

Capacity under nodal and zonal design also follows FES21¹, but we allow the following technologies² to re-site, subject to limits

- Keeping the same capacity mix is a <u>conservative assumption</u> for alternative market design options, as more granular pricing could potentially trigger a change in the capacity mix
- This approach allows a <u>direct comparison</u> across the three locational designs under consideration
- Restricting new build to (mostly) locations with prior new build is arguably also conservative, as it limits the optimisation of siting Internal Only

1: Small changes of <2% are allowed for Biomass, CCS biomass and Hydrogen generation, reflecting resource availability in line with FES21

2: All other technologies, including fossil fuel, biomass, nuclear, pumped hydro, hydro and interconnectors remain sited in identical locations across national, zonal and nodal designs.

Modelling results Long-term model output: capacity

Location of generation capacity is based on FES21 under the national design, and we allow for a degree of re-siting under zonal and nodal designs

19

COMPASS

G Y

EFT.

The national model sites generation as defined by FES21, and we assess the zonal and nodal re-siting relative to this

Decrease relative to national model
 Increase relative to national model
 Offshore wind
 OFFICIAL-InternalOnly

Decrease relative to national model Increase relative to national model Solar OFFICIAL-InternalOnly

In comparison to the national market, we can observe a reduction in installed battery capacity in Midlands Anglia and South England Internal Only

Under a nodal design, battery capacity chooses to re-site in response to the average price arbitrage opportunities

Evolution of generation capacity under the National market design as per FES21 assumptions

Similar to our nodal assessment, we have modelled the projected evolution of generation capacity in a zonal market design

Under the zonal model, wind (onshore and offshore), hydrogen and solar capacities relocate across the GB zones

Preliminary modelling results: Detailed price outcomes

Once transmission, demand and generation parameters are defined, we (4) run the dispatch model with (5) additional analysis on the outputs

F

R

COMPASS

G Y

Additional quantitative analysis

Pressure on wholesale prices is expected to ease in 2030 but increase again due to increased electrification, limited flexibility options and high carbon prices

prices in other countries due to increased reliance on ICs for flexibility.

Internal Only

Preliminary modelling results: National Market- Constraint management costs

Actual and modelled constrained on/off volumes (National design, GWh/year)

A comparison of the national design with and without transmission constraints allows us to calculate the generation that is constrained on and off

recommendation projects is yet to be included (ongoing discussion with ESO to ensure accurate network reinforcement representation)

Zonal design

COMPASS F T I F Ν F R G Y

We calculate constraint costs by forecasting the underlying bid and offer prices used in the balancing market

	Cost to ESO	Cost to ESO	
Technology	Bid	Offer	Additional assumptions
Fossil fuel	- Fuel cost - carbon cost	Offer Uplift + Fuel cost + carbon cost	Multiplier uplift calculated using historical offer prices and historical commodity prices
Biomass	- Fuel cost	Offer Uplift + Fuel cost	50% of the Absolute fossil fuel offer uplift utilised as a proxy
CCS Biomass	Carbon price – Fuel cost	Offer Uplift + (Fuel cost – carbon price)	50% of the Absolute fossil fuel offer uplift utilised as a proxy
ROCs renewables	ROCs*	(theoretical only so no price assumed)	-
CfD renewables	CfD strike price – Wholesale price	(theoretical only so no price assumed)	-
Merchant renewables	£0	Offer Uplift	20% of the Absolute fossil fuel offer uplift utilised as a proxy
Storage technologies -+	- Marginal value	Marginal value	Marginal value calculated by Plexos
Hydrogen generation H ₂	- Marginal value	Marginal value	Marginal value calculated by Plexos
Interconnector D-D	Cost of reversing flow £130/£100**	Cost of reversing flow £130/£100**	Our final output will utilise an integrated pan-EU model to estimate interconnector flows

*- The number of ROCs will depend on technology. For simplicity, we assumed 1.9ROCs for OfW and 0.99ROCs for Onshore which is the average per technology from BEIS [link]

** - Cost of reversing flow of £130 assumed in 2025 and 2030

Technologies not participating Demand side response Nuclear in the BM

Hydro (run-of-river)

Small-scale thermal

Internal Only

The mix of technologies in the BM evolves significantly over time, highlighting bid/offer behaviours that have not been frequently observed in the past...

	Cost to ESO	Cost to ESO	
Technology	Bid	Offer	Additional assumptions
Fossil fuel	- Fuel cost - carbon cost	Offer Uplift + Fuel cost + carbon cost	Multiplier uplift calculated using historical offer prices and historical commodity prices
Biomass	- Fuel 👝 t	Offer Uplift + Fuel cost	50% of the Absolute fossil fuel offer uplift
The total constraint costs are drive assumption on the share of the re- capacity developed under the CfD merchant plant ROCs re	en by the newable regime or as a ROCs*	prices exceed the strike price juently over time), CfD holders be willing to pay ESO for being (theoretical only so no price assumed)	The total constraint costs are also driven by the behaviour of storage and H2 technologies for which there is no or very limited historic information . We use an approximation of their opportunity
CfD renewables	CfD strike price – Wholesale price	(theoretical only so no price assumed)	costs, which, for storage technologies, can mean paying ESO for being constrained off in anticipation of being able to discharge later
Merchant renewables	£O	Offer Uplift	dtilised as a proxy
Storage technologies	- Marginal value	Marginal value	Marginal value calculated by Plexos
Hydrogen generation	- Marginal value	Marginal value	Marginal value calculated by Plexos
Interconnector	Cost of reversing flow £130/£100**	Cost of reversing flow £130/£100**	Our final output will utilise an integrated pan-EU model to estimate interconnector flows
*- The number of ROCs will depend on tech BEIS [link] ** - Cost of reversing flow of £130 assume Technologies not participating in the BM	d in 2025 and 2030 Demand side response	ate interconnector BM behaviour by the cost to ESO of reversing the flow.	ver) Small-scale thermal

...and the assumptions on future policy and market participants behaviour in BM can have a material impact on the constraint cost estimates.

Our preliminary estimate shows a significant increase in constraint costs post-2030, potentially over £5bn/year, given the assumptions in this scenario

- Our **preliminary assessment** indicates that constraint cost under the national market design option **could exceed £5bn by 2035.**
- However, these estimates are likely to be over-estimated due to some transmission reinforcements recommended by NOA7 currently missing.
- Moreover, including HND transmission projections is likely to redugenternal Only the forecasts further.

Outstanding refinements:

- Impact of additional transmission reinforcements (NOA 7 and NOA 7 Refresh - HND)
- Share of merchant vs CfD-supported new wind
- Pricing of interconnectors in the BM
- Transmission outages
- Estimate of constraint management costs in zonal design

Average wholesale power prices across the three market design options are influenced both by 'macro' trends and by the locational granularity

Preliminary modelling results: Nodal Market- Detailed nodal price outcomes

Introduction to detailed nodal price outcomes:

Presentation of the wholesale prices, generation mix and congestion costs

With high volumes of RES generation across GB, all of GB faces low wholesale prices, but the cost of meeting demand under national design is higher

Nodal prices reflect the real-time transmission network constraints, whereas these are obscured in a national price

Under the national design, interconnector flows can exacerbate congestion, whereas under the nodal model, they can export excess renewable generation

Internal Only

*Further refinement will update European prices to reflect changes in IC flows Note: only a subset of interconnectors are shown in the map, for clarity.

Evolution of wholesale prices over day – National and Nodal market design

Modelling results: Intra GBcongestion rents

Transmission owners would earn congestion rents, based on the wholesale electricity price differential between the two price zones they are connecting

. GB2		GB4
£0.02		£24.58
	4.4GW	

- Suppose, in a given hour:
 - The wholesale price of electricity in GB2 is £0.02/MWh;
 - The wholesale price of electricity in GB4 is £24.58/MWh; and
 - There exists **interconnection capacity** of **4.4GW** connecting GB2 and GB4.
- Assuming no losses, in settlement, this results in a rent of £108,064 (4.4GW*£24.56/MWh) in this hour.
- We refer to these revenues as congestion rents, which arise on all zone boundaries under a zonal market and between all nodes on the network under a nodal model.
 Congestion rents do not exist under the national model.
- The rights to these rents are so-called "financial transmission rights"....
-they are equivalent in concept to congestion rents in interconnectors

Internal Only

Transmission owners would earn congestion rents, based on the wholesale electricity price differential between connecting price zones or nodes

Intra-GB congestion rents (Zonal) (£bn/vear)

Intra-GB congestion rents (Nodal) (£bn/year)

• In zonal design, where congestion rents are only earned on inter-zone transmission lines. we estimate these revenues to be between £0.6bn and £1.5bn across the modelled years

congestion rents are

transmission lines

we estimate these

£1.4bn and £2.3bn

across the modelled

between pairs of nodes,

revenues to be between

earned on all

vears

Transmission owners earn congestion rents when there is a **difference in** wholesale price between zones / across nodes.

Congestion rents accrue to transmission owners and we assume that they would. as a default option, be used to reduce transmission costs (ultimately borne by consumers).

We therefore treat congestion rents as a net benefit to GB consumers.

Alternative options for distribution congestion rents are possible, e.g. by allocating FTRs to other stakeholders, which would represent a welfare transfer.

Preliminary modelling results: Aggregate impact assessment

Our final analysis will include both a consumer and a system-wide welfare assessment, in present value terms over the modelled period

Note: * Market participant costs include implementation costs to the ESO and industry participants, as well as any potential impacts on the cost of capital ** We will also include an estimate of the cross-border congestion rent change

COMPASS

G Y

R

Preliminary results indicate significant consumer benefits from zonal/nodal designs, but we are yet to evaluate the full welfare impacts

National → Zonal design

Change in wholesale prices and intra-GB congestion rents, Zonal (£bn/year)

Wholesale cost to consumers (fbn)

Change in welfare impacts, Zonal (£bn, Present Value 2025-40)

 Total system cost impact will include the elements above, plus changes in constraint management costs and producer surplus.

On average across GB, in all

modelled years. consumers

benefits are estimated to be

calculated, and are expected

£0.5-2.2bn per year

savings are vet to be

design

consumer savings

Constraint management

to be lower than in nodal

Note: Positive figures represent

Changes in CFD top-up payments, resulting from a change in wholesale prices, are a transfer between consumers and producers

National → Nodal design

Change in wholesale prices, redispatch costs and intra-GB congestion rents, Nodal (£bn/year)

- On average across GB, in all modelled years, consumers benefits are estimated to be £3.7-9.6bn per year...
- ...which includes an estimate of constraint management savings of £2-5bn

Note: Positive figures represent consumer savings

Change in welfare impacts, Nodal (£bn, Present Value 2025-40)

- Preliminary results indicate that consumer benefit from moving from a national design to nodal design would, over 2025-40, be around £69bn
- Producer surplus will need to be considered to estimate the total system costs.

Note:

• Intra-GB congestion refers to congestion rents on inter-zone transmission lines under the zonal market design and on all transmission lines under the nodal market design

Constraint management refers to change in constraint management cost between national and zonal/nodal market design

50

We will refine the preliminary results further and complete the assessment of consumer and system-wide welfare impacts

Changing **risk profiles** of market participants including **financing cost**

We consider from three angles how moving to locational pricing may change the risks faced by market participants and the potential impacts on the CoC

Risk assessment	 Consider how the various risks faced by market participants might change following a change in market design from national pricing to locational pricing. Examine how the risks to market participants identified above may affect each component (taking into consideration any mitigation and transitional measures).
Stakeholder input	 Consider any evidence from stakeholders quantifying the impact on the cost of capital.
International evidence	 Examine direct and indirect international evidence on how implementing locational pricing has affected investment and the cost of capital

Internal Only

Risks may change for market participants depending on their location, but the magnitude and direction of the overall impact on risk is uncertain

We are carrying out a high level assessment on how we might expect the identified risks to affect the various components of the cost of capital

	Other components suc rate, market risk premi are not affected by	h as the risk free fum and tax rate / these risks		
Components of the cost of capital that may be impacted		Beta	Cost of debt	Gearing
Risks related to price variability	Variability of wholesale revenues Variability of BM revenues	 Measure of systematic risk (that is, risk that cannot be diversified away). Impacted by structural changes that affect the correlation between investment returns and market returns We will assess the drivers of these risks and whether they are correlated with market 	 Measure of a company's credit risk Primarily impacted by firm's probability of default We will assess how these risks impact the 	 Measure of a company's financial leverage There is an optimal level of gearing that minimises the WACC We will assess how
Transmission network risk	TNUoS charging risk Network build risk	 return If correlated, how does this correlation change with after moving to LMP? 	probability of default.	this may be affected by any changes to the cost of equity or cost of debt.

We will not be conducting a full analysis of the impact on the WACC as it is outside the scope of this project. Instead, we will perform a high level assessment of the expected impacts of each component above.

Internal Only

Some stakeholders have provided qualitative views on the likely impact on the cost of capital, but limited evidence quantifying their positions

	Qualitative evidence
St w in	cakeholders have raised concerns that locational pricing will increase the cost of capital, hich could impact investment and hinder our Net Zero efforts. Some of the reasons cited clude:
•	greater uncertainty in forecast wholesale prices over the asset life at the point of investment;
•	additional risks imposed on generators which they cannot manage;
•	inability for generators to hedge exposure to lower wholesale prices;
•	impact of a reducing number of generators and investors;
•	temporary increase in cost of capital due to market disruption effects;
•	investors will seek a premium for exposure to increased locational basis risk (which can lead to stranding of assets in particular locations);
•	redistribution of congestion costs from consumers to generators; and
•	volume risk as under LMPs wind farms will not be compensated for system curtailment

Quantitative evidence

• In Texas, one stakeholder's experience is that the premium required for a "station gate" contract over a "system contract" is 100-150bps

Q: Is there any further substantiated quantitative evidence from stakeholders?

Liberalised markets are increasingly moving towards more granular locational pricing

- Since 2000, capacity using zonal and nodal pricing has grown by 56% and 510% respectively...
- This is partly driven by a 103% increase in the overall capacity of all markets in the figure on the left.
- Capacity has also increased as various jurisdictions switch toward more granular locational pricing.
- As at 2020, 24% of capacity using nodal pricing had previously adopted zonal (ERCOT and CAISO) pricing...
- ... while 18% of capacity using zonal pricing had previously adopted national pricing (Sweden).
- Ontario, which currently uses national pricing, is planning to move to nodal pricing.

In case study jurisdictions, investment in generation appears to be mainly influenced by policy incentives

- SPP moved to nodal pricing in 2007. There are a variety of RES investment schemes across the different states that make up SPP for example:
 - Oklahoma "promotion of wind development plan" in 2010, that aimed to facilitate further RES development and promote wind energy.¹
 - State Renewable Energy Goals in Kansas (2009) and Oklahoma (2010), and Renewable Portfolio Standards other member states.²
- Of the capacity built from 2010 onwards, 74% of this comes from renewable sources. This is equivalent to over 30GW of RES, 27GW of which comes from additional wind capacity.

- Italy moved to zonal market design in 2005. At this time, there was an established Decree ("RES-E") that stated the minimum share of electricity from RES must increase by 0.35% per year. This was supported by Budget Laws outlining various incentives³ e.g:
 - A new Feed-in-Tariff ("FiT") system introduced for Solar PV, leading to significant investment across Italy.⁴ In 2011, the government announced it would reduce incentives due to falling prices of solar technology and lower electricity bills.
 - "Tradable green certificates (TGCs)", a cap-and-trade scheme to promote RES investment. From 2007 onwards these were extended to enable new RES plants to obtain TGCs for a total of 15 years (vs 12 before).
- Almost 50% of Italy's existing capacity has been developed since 2005. 65% of which is from renewable sources this is driven by Solar PV, which has increased by >22GW.

Sources: 1) Southwest Power Pool update 2019 (link); 2) NCSL state renewable portfolio standards and goals (link); 3) EA This international (link); 4) European Commission (link)

Internal Only

Due to the limited evidence found to date, we propose to assume no change in the cost of capital in our base case but will perform sensitivity analyses

Ε R G Y

Comparison of liquidity across jurisdictions can be difficult due to different market characteristics (e.g. volume, structure, products) and metrics reported

What is liquidity?

- Electricity markets are considered liquid if a significant number of market participants are able to sell and buy products in large quantities quickly...
- ...without significantly affecting prices or incurring significant transaction costs.

Measures of liquidity

- There is no universal measure of liquidity in energy markets...
- ...but the two most commonly used approaches are the churn rate and bid ask spread.

Churn

- GB's churn rate has fallen since 2016
- Compared to other national pricing systems...
- ...GB's forward market churn is similar to that of France but lower than Germany...
- ... and is comparable to Italy and Nordpool (zonal).

Bid-ask spread

- Average bid-ask spreads in GB have risen since 2020
- Compared to other national pricing systems...
- GB's average bid-ask spread is lower than France but higher than Germany...
- ... and are higher than Italy and Nordpool (zonal).

The evidence we have found indicates that nodal markets have evolved to form hubs and FTRs that support market liquidity

Concerns expressed by some stakeholders

- Some stakeholders have expressed concerns that liquidity will be lower under locational pricing because market participants will have to trade at their node rather than across the whole market...
- ...resulting in fewer trading counterparties and less efficient trading.

- The evidence we have gathered so far indicates that nodal markets have developed mechanisms to support market liquidity.
- For example, nodal markets in the US have evolved trading hubs that are defined by ISOs and market participants.
- Trading at and between these hubs are very liquid in the forward exchanges as evidenced in papers by the Climate Policy Initiative (2011) and MIT Energy (2022).¹
- This could a potential option for GB, where trading is not constrained at a particular node, but rather via liquid hubs...
- ... and market participants will manage price differentials between the hub and their node via FTRs.

Cleared bids/offers as a % of submitted bids/offers, PJM, Jan 2021 to June 2022

In PJM, the no. of submitted increment ("**INC**") offers and decrement ("**DEC**") bids is typically **2x to 3x** the number of cleared bids (measured in MW) or **3x to 6x** (measured in volume)

Source: (1) Climate Policy Initiative (link), (2) Q2 2022 State of the Market, PJM, (3) Eicke and Schittekatte, MIT Energy (February 2022).

Wrap-up and next steps

Wrap up & next steps

Next few weeks

- Publish workshop materials and any other supportive materials
- Progress modelling (incl. limitations discussed today and HND)
- Incorporate additional stakeholder feedback

Later this year

 Planning for 2-3 further workshops ~ Oct-Nov covering:

- Zonal and nodal market designs and policy interactions
- Updated modelling results (based upon NOA7 refresh)
- Analysis on mitigations and transitional measures, distributional impacts and market participant risks
- Report setting out our findings