Presentation to stakeholders

Modelling approach and assumptions

FTI Consulting | Ofgem

26 May 2022

Agenda for today's workshop

	Welcome, purpose of session	14:00 – 14:05	5 mins	ofgem	
	Overview of project scope, objectives	14:05 – 14:15	10 mins	ofgem	
1	Session 1: Overview of our modelling approach	14:15 – 14:45	30 mins	F T I™ consulting	
Session	 Facilitated break-out group to discuss modelling approach Summary of the discussions 	14:45 – 15:00	15 mins	F T I [™] Consulting	ofgem
	BREAK	15:00 - 15:10	10 mins		
on 2	Session 2: Key assumptions	15:10 – 15:40	30 mins		
Session 2	 Facilitated break-out group to discuss modelling approach Summary of the discussions 	15:40 – 16:00	20 mins		ofgem
on 3	Potential policy interactions and impacts	16:00 – 16:05	5 mins	ofgem	
Session 3	Facilitated break-out group to discuss policy interactions	16:05 – 16:20	15 mins	F T I CONSULTING	ofgem
	Wrap up, thanks and next steps	16:20 – 16:25	5 mins	ofgem	

Welcome

Regular stakeholder engagement will be used to inform the assessment and test work-in-progress

Approach

- Facilitate small group discussions with a range of stakeholder interests use detailed group discussion to inform and test critical elements of the assessment
- Publish all workshop materials and a short overview of key discussions points for transparency
- Opportunity for all interested stakeholders to submit written feedback after each session

Housekeeping

- Today's focus is on the modelling and policy impacts points more relevant to later workshops will be parked
- Chatham House Rule we will publish an overview of key discussion points but views will not be attributed
- Encourage use of cameras in break-out rooms and make use of the chat function
- Use chat function for clarification questions during the presentations
- **Break** at 15:00 for 10 mins

Today's workshop will be delivered by Ofgem's Wholesale Market Reform Team supported by FTI Consulting and ES Catapult

ofgem

Heather Stewart Team Leader

Francisco Celis-Andrade Leading LMP Modelling

Kelly Gavin Leading BEIS engagement and Investment Support

Mark Carolan Leading LMP Project

Phoebe Finn Leading Governance and Stakeholder Engagement

Matthias Noebels Leading Costs and Implementation

Jason Mann **Project Director**

Martina Lindovska Modelling expert

Joe Perkins GB policy expert

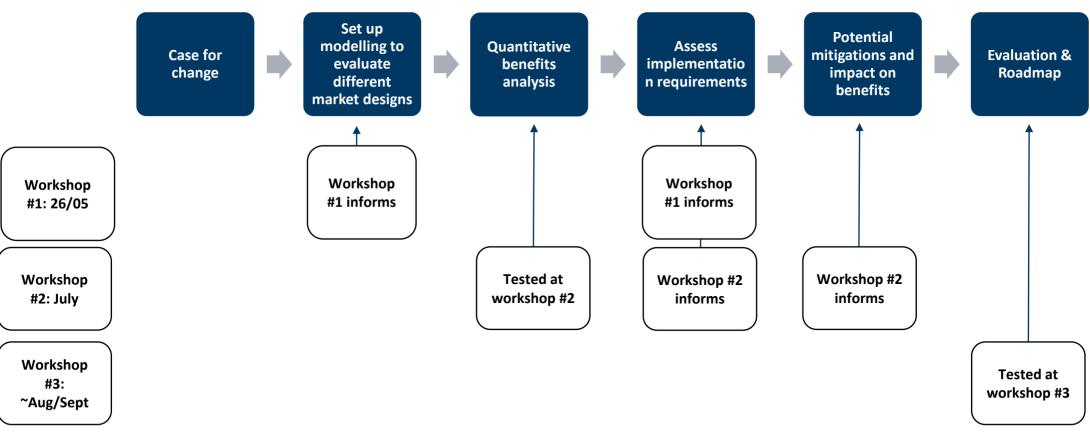
Ljubo Mitrasevic Project manager

George Day Project Partner

Objectives and scope of the project

Energy Systems Management and Security(ESMS) directorate - Ofgem

ESMS						
Market Opera	tion & Signals	Market Design	Institutions for Net Zero	Digitalisation & Decentralisation		
Cross border arrangements	Core electricity charging	Net Zero charging reform	ESO FSO regulation	Digital Vision & Architecture		
Energy Security of Supply	Core electricity connections	Distribution charging reform	DSO DSO regulation Governance	Energy Sector Data Regulation		
Domestic market management	Core gas charging & access	Wholesale market reform	GSO regulation	Distribution Flex Markets & Enablers		
	TNUOS Task Force	LLES		Aggregator Licensing		



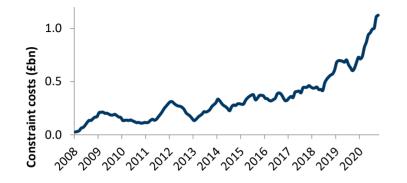
Project overview: This project is part of our Full Chain Flexibility Strategic Change Programme

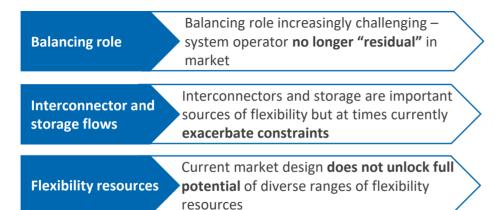
Central question	entral question Will introducing locational granularity into the wholesale electricity market enable a fully flexible, low carbon, low-cost system?				
	Produce a technical assessment of alternative wholesale market designs				
Purpose	 that considers: the role for locational granularity in enabling power sector transformation and the extent to which (and how) the locational granularity of electricity in the wholesale market could increase to best achieve this. 				
Objectives	 Identify a range of feasible market designs that vary according to how granular the locational value of electricity is (e.g. national, zonal and nodal) Assess the potential benefits, costs and distributional impacts associated with specific models and design choices Identify possible design choices and implementation pathways 				

To evaluate potential nodal design options, Ofgem and FTI have developed a sixstage workplan with regular stakeholder engagement

We expect to finalise our assessment in October.

Background




The ESO have identified several issues with the current working of energy markets which could affect GB's aim to achieve a cost-effective, secure pathway to Net Zero

In particular, according to the ESO, constraint costs are "rising at a dramatic and accelerating rate"

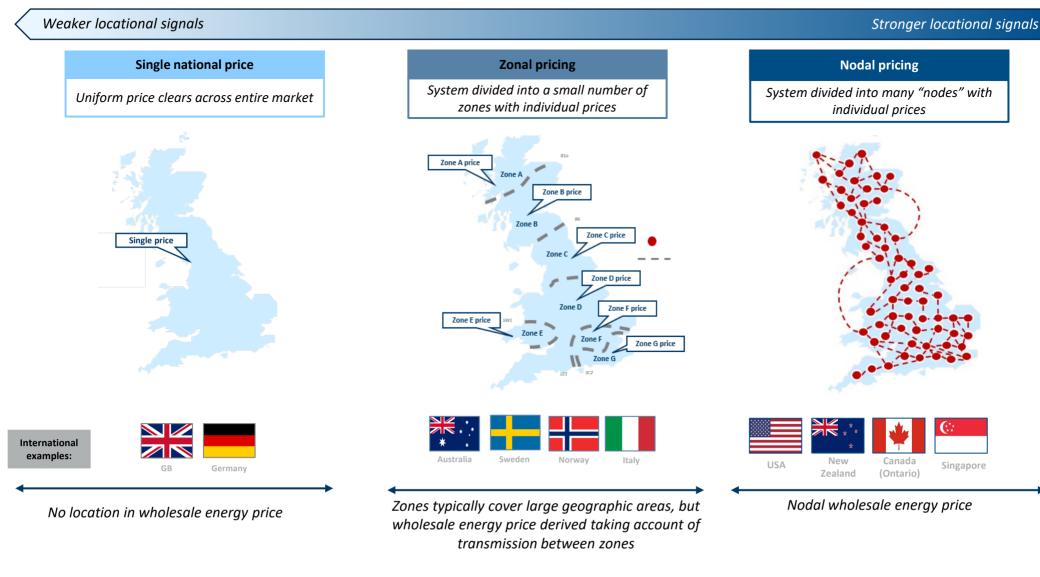
Congestion costs have increased 8-fold since 2010 at a cost of £7bn to customers...

ESO identified three other issues with market design:

... these costs are anticipated to be sustained at high levels – at a cost of c.£13bn to £19bn to 2035

Additionally, other potential issues are:

Siting Decisions

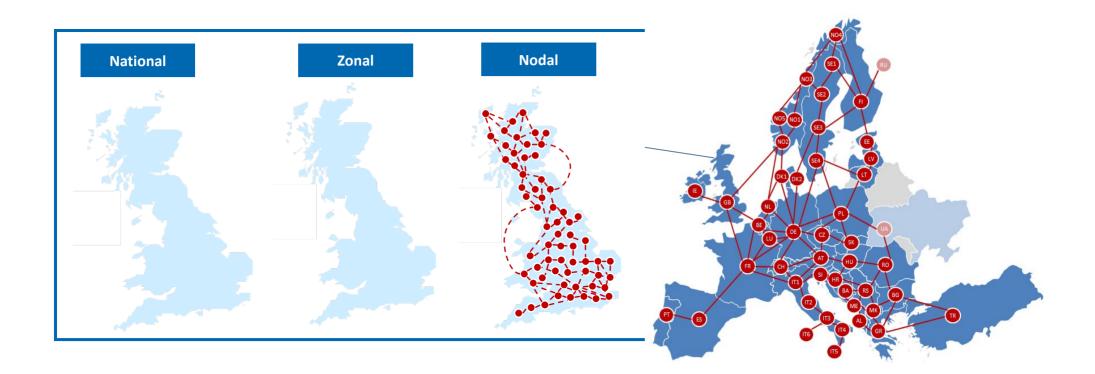

Locational signals provided by TNUoS may not be sufficient to incentivise an efficient siting of generation and demand

Session 1: Overview of our modelling approach

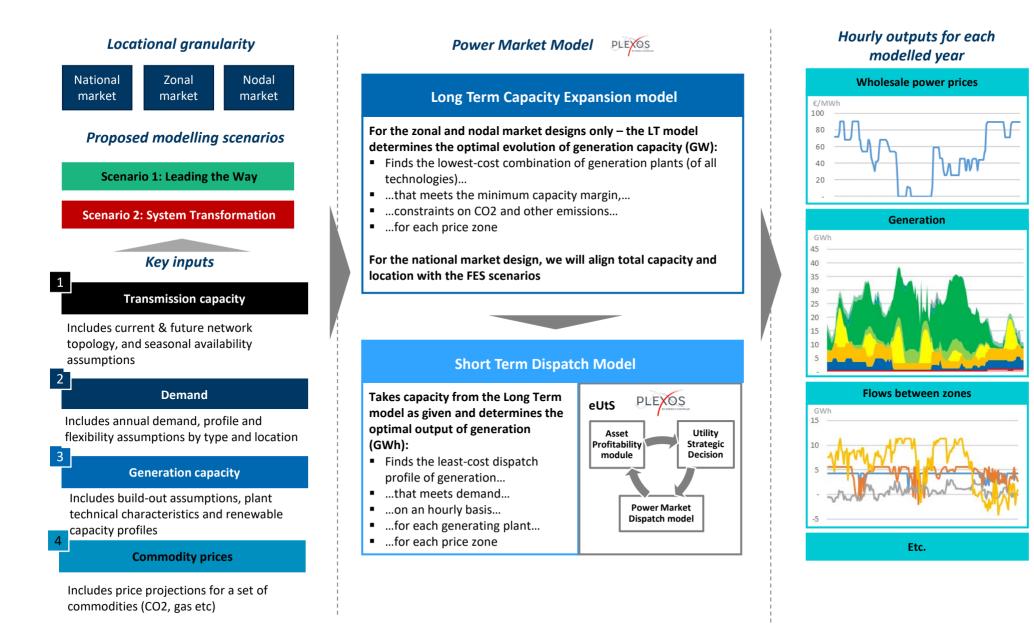
To model locational market design options, we plan to compare the status quo national market design with two locational market designs

The transition to more granular locational pricing have the following key impacts – these will assessed either quantitatively or qualitatively

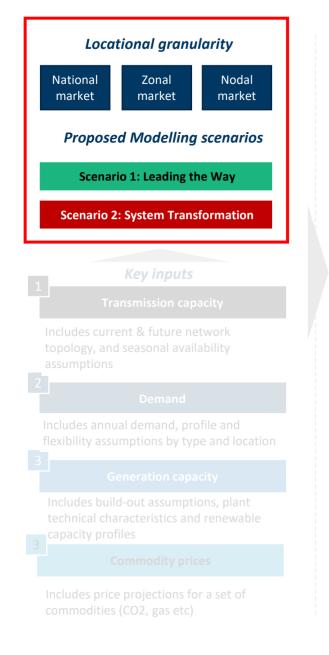
Туре	Effect	Quantitative	
	Changes in wholesale prices (lower in export-constrained areas and higher in import-constrained areas)	\checkmark	
Short-run	Reduced cost of congestion to be borne by consumers	\checkmark	Overall approach and assumptions are discussed in
impact (Operational)	More efficient dispatch across all resource types including flexibility resources	\checkmark	this workshop
Operationaly	Surplus revenues from congestion rent and losses	\checkmark	
	Operational impacts from central dispatch system relative to the BM		
Long-run	Greater price signals to incentivise generation and storage to site at more efficient locations	\checkmark	
impact	Greater price signals to incentivise demand to site at more efficient locations	\checkmark	
(Investment)	Improved signals for transmission development (due to transparent wholesale prices between different nodes)		Qualitative assessments may include (1) potential sensitivities
	Changes to CFD payments	\checkmark	(1) potential sensitivities(2) international case studies(3) interviews with third-
	Other policy interactions		parties
Costs / Other	ESO system implementation costs	\checkmark	Q: What are your views on the key
	Market participant costs		impacts of the locational market
	Changing risk profiles of market participants including financing cost	\checkmark	design we set out ?


These assessments will inform us of the impact of locational pricing market designs on different stakeholder groups (by type and location)

Effect	Consumers	Generators	ICs	Network owners	ESO
Changes in wholesale prices (lower in export-constrained areas and higher in import-constrained areas)					
Reduced cost of congestion to be borne by consumers		Modelled impact w	vill be assessed	by stakeholder	
More efficient dispatch across all resource types including flexibility resources		group	s <u>and</u> by locat	ion	
Surplus revenues from congestion rent and losses		A range of sensitivi	ties will be te	sted which could	
Operational benefits from central dispatch system relative to the BM		ar stakeholder assumptions)			
Greater price signals to incentivise generation and storage to site at more efficient locations					
Greater price signals to incentivise demand to site at more efficient locations		ily affect specific			
Improved signals for transmission development (due to transparent wholesale prices between different nodes)					
Changes to CFD payments		ur			
Other policy interactions	Q: What are your views on the stakeholder				
ESO system implementation costs					
Market participant costs		·T-]			
Changing risk profiles of market participants					


Overarching approach is to divide GB market into a number of zones or nodes, overlaid on European market model to assess price and stakeholder impact

Baseline geographical set-up of FTI's power market model



Our modelling is based on the Plexos Integrated Energy Model platform, which forecasts the optimal evolution of capacity and generation dispatch

For the remainder of the first session, we will discuss a range of options for locational granularity and identify a plausible range of modelling scenarios

Present the spectrum of locational market design options...
And discuss preferred options to model

the zonal and nodal market designs only – the LT mode

- Find Present the range of energy scenarios...
 - And consider which are the best suited for modelling

...for each price zone

For the national market design, we will align total capacity and location with the FES scenarios

Short Term Dispatch Model

Takes capacity from the Long Term model as given and determines the optimal output of generation (GWh):

- Finds the least-cost dispatch profile of generation...
- ...that meets demand...
- …on an hourly basis…
- ...for each generating plant...
- ...for each price zone

Hourly outputs for each modelled year

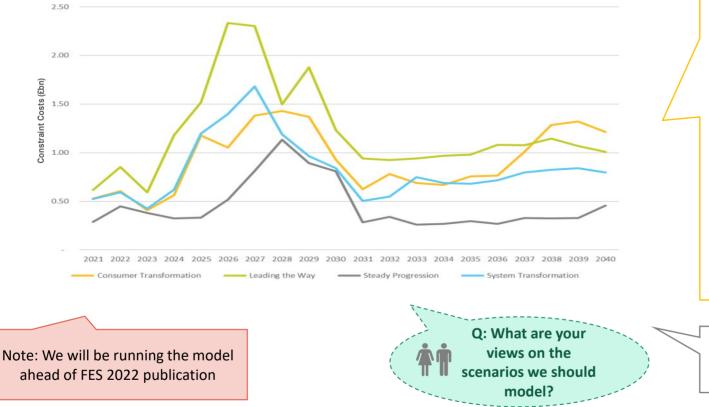
we should model?

To model zonal market design options, we propose to use seven zones following the most constrained boundaries as defined by the ESO

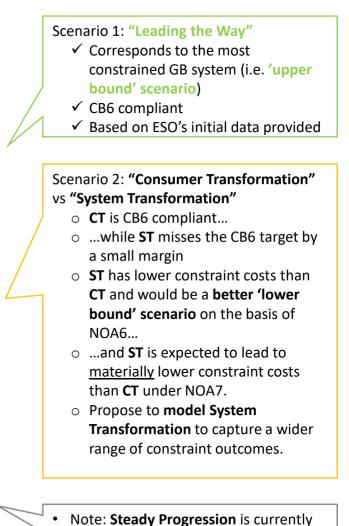
Options	Number Zones / Nodes	Pros	Cons		
1) Pre-BETTA split	2	 Splits along a boundary with the most significant constraint costs Might address stakeholder concerns regarding liquidity 	 Unlikely to be meaningful given planned Tx reinforcements and evolving electricity system 		
2) Main constraint zones (currently observed)	7	 Based on the set of most significant constraint boundaries Defined by the ESO – objective Might address stakeholder concerns regarding liquidity 	 Historically-observed and hence may not be reflective of the future as the Tx network continues to evolve 		
3) NOA & ETYS zones (currently identified)	20 ¹	 Boundaries developed based on SQSS requirements Identifies additional, less critical, network bottlenecks 	 Some boundary zones overlap or represent the subset of larger constraint boundary Highly fragmented 		
4 BID3 model zones	60²	 Consistent with the approach used in FES market modelling (may vary over time depending on generation fleet) 	 Zones are not fixed and vary for different technologies Zones do not reflect constraint boundaries 		

To model nodal wholesale market design, we propose to use transmission substations to better reflect the network topology

Options Number Zones / Nodes		Pros	Cons		
1 GSPs only (i.e. interface between Tx and Dx network)	500+	 Based on the number of GSPs which are well defined and well understood within the industry Likely to be sufficient to capture majority of the transmission constraints 	 Does not fully align with transmission network topology Calculation of the losses will deviate from actual observed values 		
2 Transmission substations ¹	750+	 Better reflects generation location (e.g. includes generation-only nodes) More accurate representation/calculation of the overall network losses 	• More computationally challenging than option above		
3 All nodes identified in PowerFactory model	1800+	 Representation of the ESO network model as used for system planning (and not necessarily for market modelling) 	• A large number of nodes are defined historically and may not be relevant as it does not represent the actual system configuration		
4 Include all the Distribution level nodes	10,000+	 More accurate representation of the combined transmission and distribution network 	 ESO has no visibility over distribution level nodes Not aligned with SoW of being "transmission-first" No evidence of a 'needs case' to introduce dynamic locational price signals at the distribution level No international precedent for distribution LMPs 		


Q: What are your views on the nodal market design options we should model?

Notes: (1) Transmission substation includes any point on transmission network where two or more circuits connect (TX/DX, TX/Generator, Tx/Tx interface).

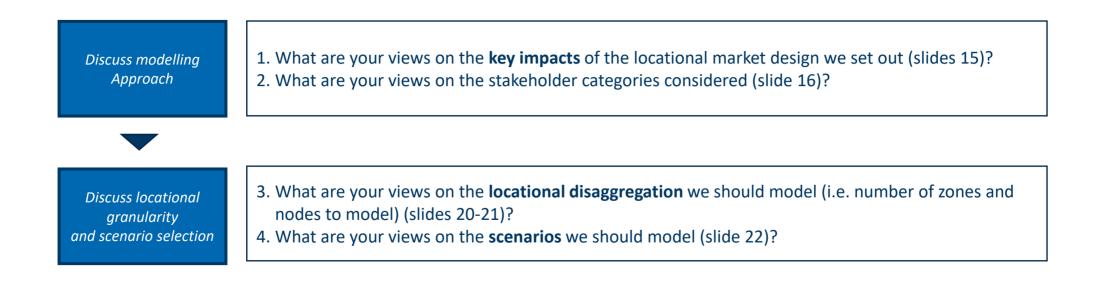


We intend model two FES scenarios which would map out a wide range of possible outcomes from the model

- Propose to select two FES 2021 scenarios that provide the widest range of total system constraint costs, in order to capture the range of system constraint outcomes.
- In addition, these scenarios should be Net Zero compliant and, ideally, at least one CB6 compliant.
- Based on ESO's NOA6 publication, we recommend using the Leading the Way and System Transformation scenarios.

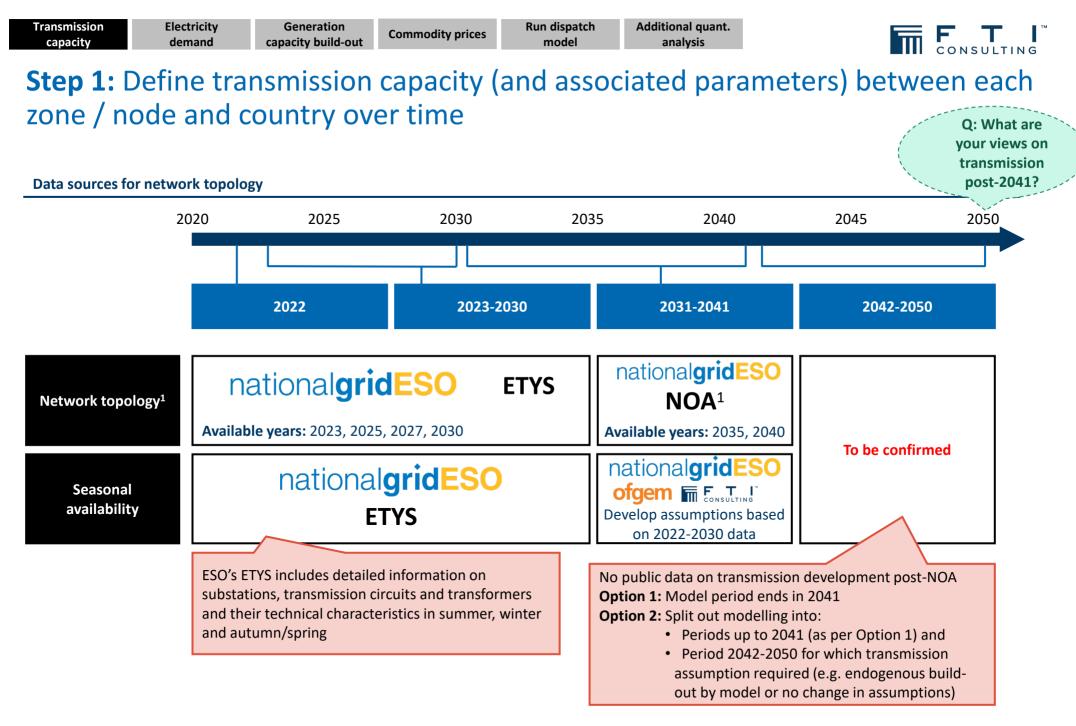
NOA 6, constraint costs by FES scenario, 2021 to 2041

Note: **Steady Progression** is currently seen as less preferred as it does not meet Net Zero by 2050


Session 1: Breakout group discussions

Breakout group 1: discussion structure

Split stakeholders into smaller breakout groups and discuss the proposed modelling approach and gather their views on locational granularity and scenario selection



Session 2: Key assumptions

Session 2: Breakout group discussions

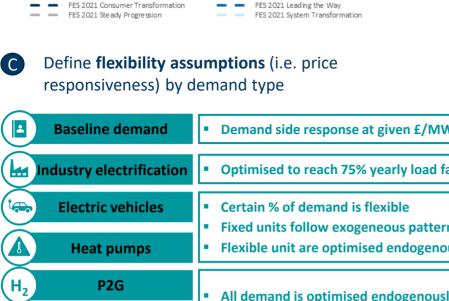
¹⁾ Circuit characteristic (e.g. seasonal ratings and impedances) for the reinforcement proposed by NOA will be based on standard parameters for Transmission assets based on type (e.g. OHL, Cable, Transformer) length, and nominal capacity.

Δ

analysis

Define hourly demand profiles by demand

0


Step 2: Define the evolution of demand levels for each node, together with an hourly demand pattern, and flexibility assumptions by demand type

R

by demand type

Define annual demand by node, by year and

40 Total GB demand on 9th January 2030 20

> 60 **Total GB demand** 40 on 15th June 2030 20

type (where possible)

Note: EVs, heat pumps are further optimised in each zone according to prices

Note: We use the same pattern for baseline demand in all zones to reflect ESO's approach

Baseline EV Heat pumps

7 9 11 13 15 17 19 21 23

11 13 15 17 19 21 23

Assess impact of **demand portability** (i.e. energy-intensive consumers decide to relocate/site to different locations)

5

9

Demand relocation between the zones/nodes is not modelled endogenously

Option to model benefits from demand portability with exogenously-defined sensitivities

Sum of demand type = total demand

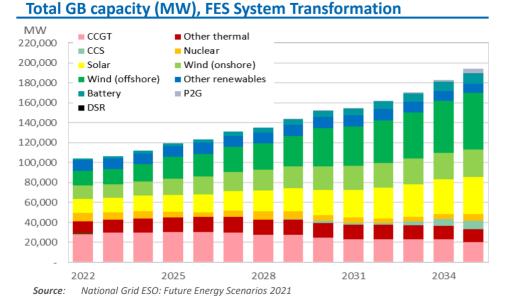
Baseline demand	Demand side response at given £/MWh
Industry electrification	 Optimised to reach 75% yearly load factor
Electric vehicles	 Certain % of demand is flexible Fixed units follow exogeneous pattern
Heat pumps	 Flexible unit are optimised endogenously
P2G	 All demand is optimised endogenously by
Storage	the model

Electricity

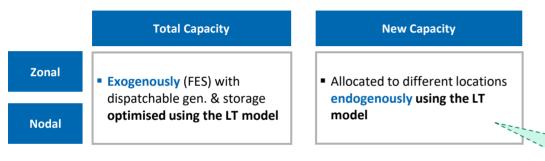
demand

The ESO's FES is the primary source for annual demand data while demand patterns and flexibility assumptions come from a range of sources

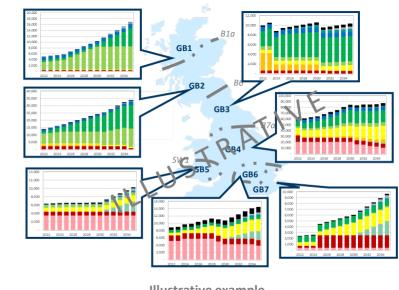
Data sources for demand


	Baseline	EV	Heat pump	Industry Electrification	Storage	P2G
Annual level			gridESO 2021		Demand level o installed capacity, v	O/ofgem I E.T. depends on the vhich is determined lling (see slide [x])
Hourly profile	entsoo/nat We are reviewing th ensure consistency other European cou by ENT	ne ESO profiles to with profiles for untries published	ESO cannot provide heat pump profiles		s optimised endogend	
Flexibility	DSR activated when prices are very high (c.300/MWh, increasing each year) up to 40 hours a year	Proportion of calibrated to under flexible	nationalgridESO/ofgem For Former For		choose to consu power with re opportunity co	e. storage assets me and discharge ference to the st of storage vs nption)

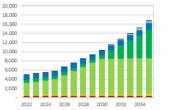
analysis


Step 3: Develop generation capacity (including storage) build-out under each of the locational market designs

For the **national** market design, use the **total generation** capacity rollout as set out by the FES...



In Zonal and Nodal markets we would expect a generation to C locate differently given different greater locational price signals



... as well as generation capacity at each location (GSP-R level) which is also provided by the FES

GB capacity by zone (MW), FES System Transformation

Q: What are your views on how generation capacity should be forecasted?

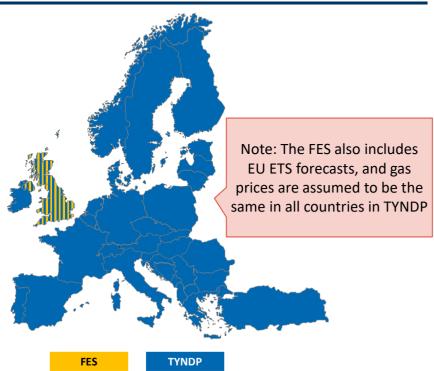
Zonal / nodal: Optimised based on locational pricing – some capacity relocates due to wholesale price signals

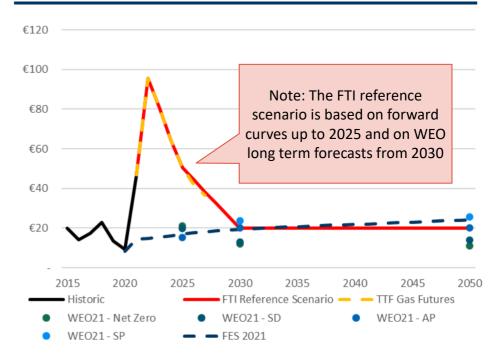
30

Capacity input data is based on the FES 2021, while inputs for our long-term model are based on European benchmarks

Data sources for generation capacity

	Nuclear	Thermal	Renewable	P2G	Storage
Capacity build-out input	nati	onal grid E	SO Future	Energy Scenarios	2021
САРЕХ	European Commission	Technology Path	ways: 2020 Refer	ence scenario	Bloomberg New ENERGY FINANCE
Efficiency of new units	en	tsoo T	YNDP 2022		FTI CONSULTING 9:90% 45%
Max capacity per technology in zones/nodes	some si	tes are fixed (e.g. nucl	To be confirmed – ear), and some sites a	re limited (e.g. offsho	re wind)

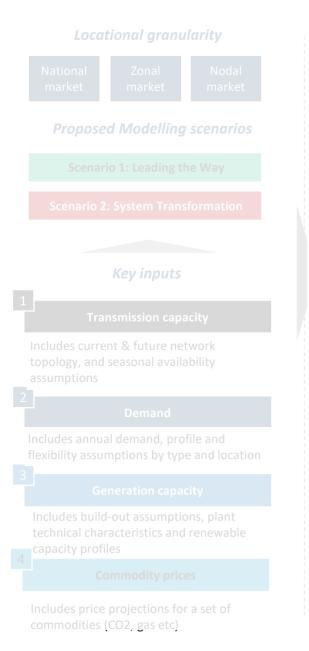

analysis

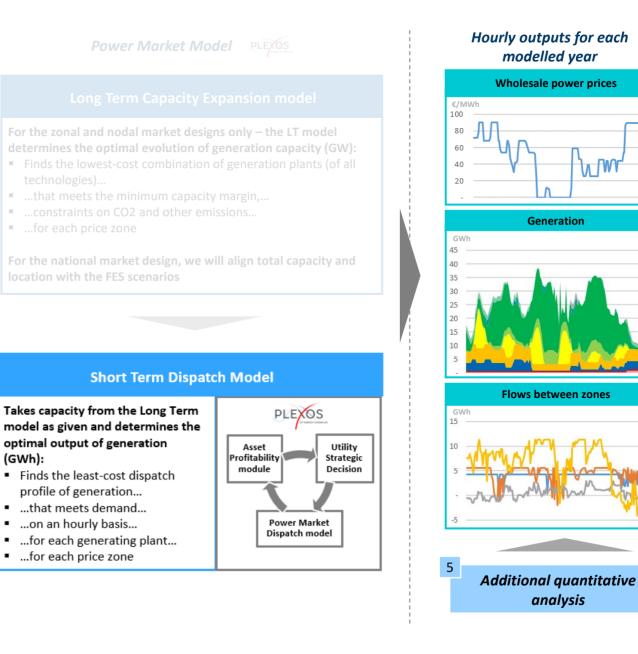

Commodity price forecasts are based on future curves and long-term projections in the World Economic Outlook

- Commodity prices (mainly CO2 and gas) are the main determinant of the Short Run Marginal Cost (SRMCs) of thermal power generators, and thus a primary driver of wholesale power prices
- We can calibrate commodity price forecasts using different forecasts:
 - 1. TYNDP (ENTSO-E): Provides commodity price forecasts for the whole of Europe, up to 2050. Long-term forecast are based on the IEA's Word Economic Outlook (2021) scenarios, while short-term forecasts follow future curves if they differ from the WEO significantly:
 - 2. FES (NG ESO): Provides forecasts for each commodity in GB, up to 2050.
 - Future curves + long term benchmarks: To reflect recent market development, we often combine long-term benchmarks with future curves 3.

Geographical scope of long-term forecasts

Gas price forecasts (€/tCO2)

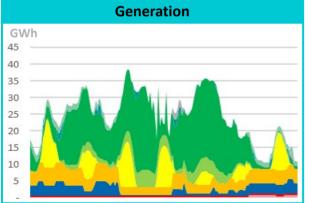


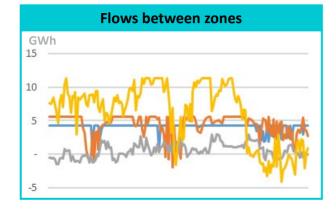

(GWh):

.

analysis

Once transmission, demand and generation parameters are defined, we (4) run the dispatch model with (5) additional analysis on the outputs


Step 4: Run dispatch model in each year to produce hourly outputs for each modelled year and each zone/node


Run dispatch

model

Hourly outputs for each modelled year

Dispatch approach

- The model uses the capacity build-out and determines the least-cost dispatch to meet hourly demand (generator bids are priced on an SRMC basis).
- This is applied to each granular location simultaneously within GB (and across Europe).

Expected outputs

- Generation / consumption by each resource on the system on an hourly basis
- Associated wholesale prices at each node/zone.
- Flows between each zone / node / countries (this would cover curtailment of renewables, Interconnector flows, storage operations and transmission losses among others).
- Congestion and losses rent are calculated using the outputs determined by the model

 For the national / zonal markets, the short-term (ST) dispatch model is run twice – with and without intra-national / intra-zonal constraints. This will provide congestion volumes. demand

Run dispatch

model

Renewable profiles and thermal plant characteristics are based on ENTSO-E data to ensure consistency across all of Europe

Data sources used:

Renewable capacity profile	Pan-European Climate Database	 The Pan European Climate Database ("PECD") includes climate data for 5 different onshore GB regions (UK01- UK05 on the map)
Thermal plant operating characteristics	entso Pan-European Market Modelling Database	 Each node/zone would be assigned to one of these regions or a combination of them Renewable profiles will be based on the 2013 climate year, in line with ESO
Generation, demand and interconnector assumptions for Europe	entsoe Tyndp 2022	 assumptions for the FES and NOA Choice of scenario to be determined; these assumptions will be kept

Step 5:The approach to assessing the impact of CFDs to inform our modelling will vary across market designs depending on whether CFD generators are existing or new.

• Our modelling assumes an **efficient dispatch and siting of CFD-based generation**, responding to locational wholesale electricity prices

Run dispatch

model

- New generators with CFDs will be **allocated to different locations endogenously**, based on expected future wholesale electricity prices subject to other real-world constraints (e.g. no onshore wind in England)
- We recognise that the **existing CFD regime** would need to be **adapted to be compatible** with locational pricing

Q: What are your views on our approach to modelling CFD contract holders?

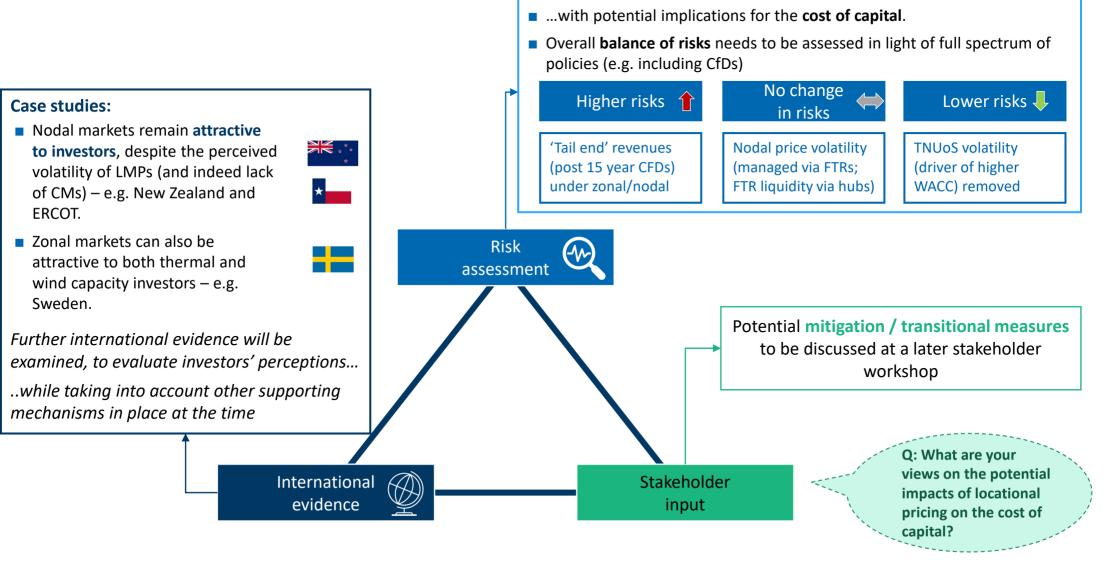
Key principles for CFD regime design

Existing (legacy) CFD contracts

- Honour existing contracts and obligations
- Likely to include a continuation of existing strike prices, and risk exposure (e.g. through 'tail risk')

New CFD arrangements

- Continued competitive allocation of contracts based on CFD strike price auction
- Efficient allocation of risks between generators and consumers
- Efficient siting incentives for new generation, reflecting transmission network / locational prices (currently absent from the existing CFD regime)



Locational pricing could change the risks faced by market participants...

Step 5: Stakeholders have raised concerns regarding the potential impact of locational wholesale pricing on the cost of capital

Additional quant.

analysis

Step 5: We will provide an indicative estimate of a range of implementation costs, triangulating from several sources

model

One-off implementation costs predominantly consists of the two items below

ESO system implementation costs

One-off costs to enhance the processes, new IT & software systems and capabilities

Market participant implementation costs

One-off costs to update system and capabilities of market participants

Approaches

International case **Conversations** with Direct studies, including recent conversations with ESO to understand (IESO) and older system vendors & cost of running examples (ERCOT, CAISO) market participants existing systems

Assumptions

TBD on approach to estimating **zonal implementation costs**

IESO case study on system costs (Ontario, Canada) IESO (2019) MRP Business Case – Market Renewal Proaram Update Meetina

Installed capacity (GW)	38
Target LMP go-live date	2023
Labour costs (mix of design, IT, project managemen & support, shared services, market rules and IT roles (FTE = 60 to 70))	^{nt} CAD \$58m
IT (Hardware & Software) (dispatch systems = \$31m)	CAD \$53m
Professional & consulting (legal, consulting and contract services)	CAD \$34m
Contingency (mostly contingency for IT provisions	CAD \$16m
Other (interest & rent)	CAD \$9m
Total (Central Estimate)* *30% of the Central estimate cost are actuals (already incurred)	CAD \$170m
Cost estimate uncertainty	-\$18m CAD +\$23m

Run dispatch

model

We anticipate we will need to run the following types of sensitivities, but the precise assumptions will be decided at a later date and limited by the amount of time available/computational complexity

A. Market design & policy sensitivities

Locational price	Vary the extent of locational price exposure to demand and to generation / storage / interconnectors
exposure to demand	e.g. load to face national price for a period of time (at the cost of efficiency loss)

Impact of nodal pricing on dispatch Isolate the impact of locational pricing on dispatch - for given level of transmission and capacity build out... ...to separate out the role played by Tx build-out and siting decisions

Q: What are your views on (1) our proposed sensitivities; (2) other sensitivities we should include; and (3) which one do you see as a high priority? B. Generation, transmission & demand sensitivities

Generation	Test the sensitivity of the CBA to key variables, e.g.:
and	 GB nuclear capacity
transmission	 Interconnector capacities
sensitivities	 Transmission build-out sensitivities

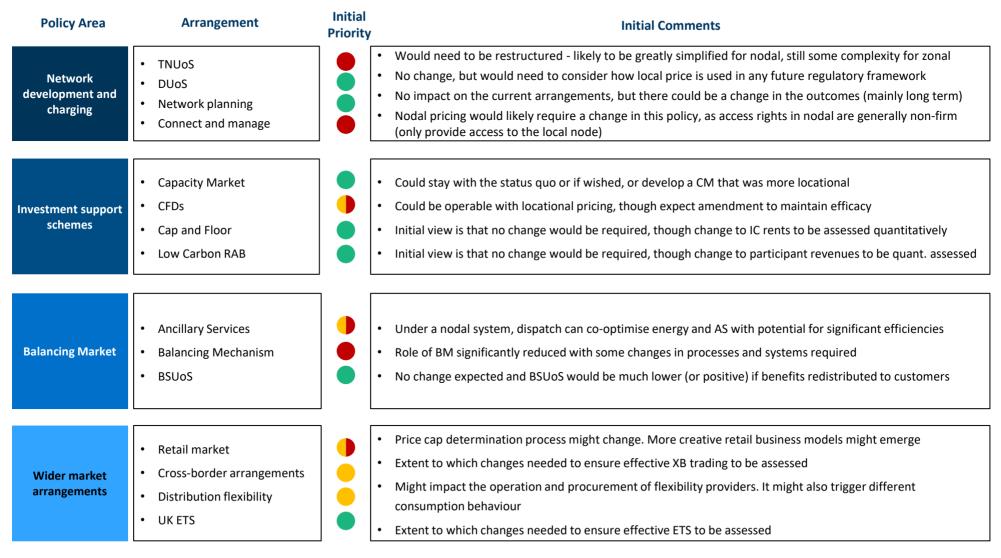
Demand portability Test the sensitivity of the CBA to demand portability: allowing some demand to relocate in response to wholesale power price signals (e.g. data centres, electrolysers)


Alternative scenarios

- Test the sensitivity of the CBA to using other (non-FES) scenarios...
- ...for example, BEIS's demand and supply scenarios

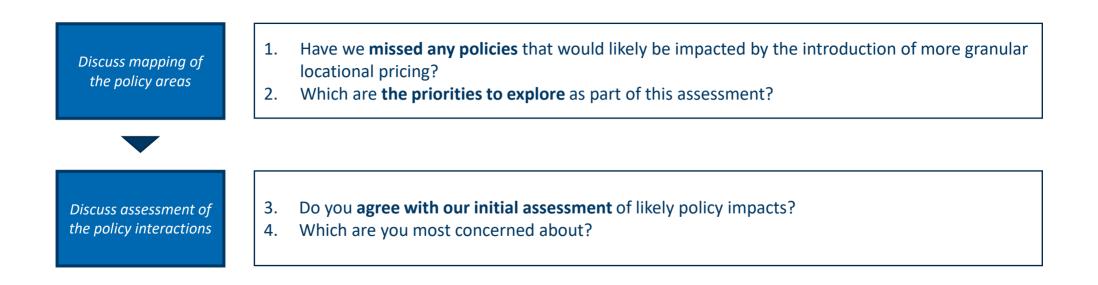
Breakout group 2: discussion structure

Split stakeholders into smaller breakout groups and discuss the proposed modelling approach and gather their views on locational granularity and scenario selection



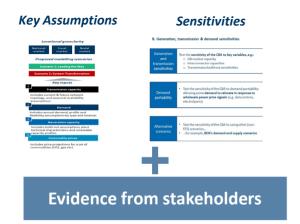
Potential policy interactions and impacts

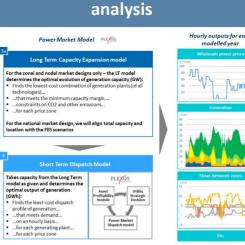
A potential introduction of greater locational pricing could have a range of implications for different policies & regulations



NB: This slide intends to capture initial thinking that has been done so far on the extent to which current policies & market arrangements could be impacted, should more granular locational pricing be introduced to the GB wholesale electricity market. It is presented for discussion and does not represent Ofgem's view on the future of these policies or arrangements.

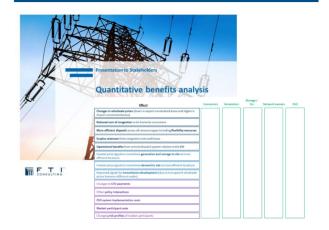
Breakout group 3: Discussion structure


Wrap up and next steps



Next steps and plans for the next workshop

Consolidate key assumptions and sensitivities



Conduct Quantitative benefits

Next workshop

- Publish a short summary of • discussions and workshop materials – ask all interested stakeholders for written feedback
- **Incorporate feedback** from today's ٠ session
- Conduct qualitative and quantitative assessments of key impacts
- Identify the **impact** of locational pricing market designs on different stakeholder groups

- Present initial results of the cost-• benefit analysis
- Discuss with stakeholders (1) • potential **mitigations**, range of transitional measures and impact on benefits and (2) implementation requirements

Experts with Impact

