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1. Introduction and Executive Summary

1.1. Background to the Study

The cost of capital is a key input in the regulatory process for utilities. The utility regulators

are responsible for regulating a wide range of industries—gas, electricity, water, telecom, rail,

airports and postal services. An important function of each of the regulators is to set price

limits for those parts of those industries where firms have significant monopoly power in

setting prices faced by customers. In setting these price limits, regulators need to decide

what would constitute a “fair” rate of profit.

To do this regulators need to assess the return that investors in these firms would have

earned if they invested in any firm with a comparable level of risk. In contrast to their

product markets, all utilities can reasonably be assumed to face fully competitive capital

markets. In such markets, asset prices will always ensure that a new investor in the firm

will simply earn the competitive (risk-adjusted) return. If the rate of profit earned by the

utility exceeds that on competitive firms, this will simply be reflected in a higher market

valuation of the firm. This will only be to the benefit of existing shareholders to the extent

that the excess profits could not have been rationally forecast at the time they invested in

the company.

Thus, the limited nature of competition in product markets is not a relevant issue in

assessing the cost of capital. In capital markets, the firm can be treated as a “price-taker”

rather than a “price-maker”. All that matters is the market cost of capital adjusted for the

firm’s risk characteristics, irrespective of whether it is a monopoly.

There is and has been much research and debate concerning the cost of capital for busi-

nesses in general, let alone simply for utilities. There have been a number of new develop-
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ments in the finance literature, while at the same time, regulators have had to address new

and complex issues when estimating the cost of capital. It is frequently difficult for regulators

to address these issues in any depth on an ad hoc basis. The regulators have also attracted

criticism, whether justified or not, for not appearing to be consistent on their approach to

the cost of capital. This criticism has come from the industries themselves, various ad hoc

groups (e.g., The Better Regulation Task Force) and certain government departments.

The regulators have decided, therefore, to commission this research project into certain

aspects of the cost of capital in order to gain an independent view on emerging and new

issues in the estimation of the cost of capital, the scope for greater consistency between

regulators and to understand why there may be differences in approach.

1.2. Overview of this Study

Our study is not intended to provide exhaustive coverage of every possible aspect of the cost

of capital. Instead, at the request of the regulators, we have focussed on certain key areas,

as follows:

Chapter 2 examines the “common components” of the cost of equity capital: i.e., those

that are common to all firms, and all competing asset pricing models.

Chapter 3 provides a comparison of asset pricing models for regulation: we re-examine

the standard “CAPM” approach, in the light of recent academic work on alternative asset

pricing models, with a focus on the relevance for practical implementation in regulation.

Chapter 4 focusses on practical issues in estimation of asset pricing parameters for utili-

ties, with particular focus on estimation of the CAPM “beta”.

Chapter 5 discusses the case for consistency in setting the cost of capital: whether, even

if regulators share the same central approach to estimating the cost of capital, uncertainty

as to the true value may lead regulators to set different values in different industries.

Chapter 6 discusses “regulatory risk”: whether there may be risks associated with regu-

lated industries that are not captured by standard measures of systemic risk, but the impact
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of which on investment returns cannot be eliminated by diversification.

1.3. Executive Summary

Since this report is quite lengthy, and at points fairly technical, we provide below a short

summary of our key conclusions. In addition, each chapter also ends with a list of the key

conclusions relevant to that particular chapter.

1.3.1. The Common Components of the Cost of Equity

Our starting point in Chapter 2, as in all such studies, is the “weighted average cost of

capital”: the rate of return required by a company’s investors, whether in its debt or its

equity. Our primary focus in this study, however, is on issues relating to the cost of equity

capital, in relation to which there is the greatest degree of difficulty in measurement, and

(largely as a result) the greatest degree of controversy.

All firms are different. But a central element in finance is that, despite their differences,

a significant element in the cost of raising equity finance is common to all firms. In the most

commonly used framework for asset pricing, the Capital Asset Pricing Model (CAPM) of

Sharpe (1964) and Lintner (1965), there are just two determinants of the expected return on

any asset: the return on a riskless asset; and the expected gap between the “market return”

and the risk-free rate. In the CAPM the only thing that is specific to any given asset is its

“beta” (β), that determines how responsive the asset’s return is to the excess return on the

market. While the CAPM itself has come in for considerable criticism in recent years(that

we discuss at some length in Chapter 3) it is fair to say that virtually any asset pricing model

that is used to derive an appropriate estimate of the cost of capital for regulated industries

must inevitably build on estimates of the common components that feed into the CAPM

itself. Our starting point, therefore, needs to be to examine how to estimate these common

components.

It is standard usage to follow the CAPM by building up the cost of equity capital from its

two common elements: the risk-free rate and the expected excess return on the market (or
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equity premium). We argue however that this approach is not necessarily the most efficient

way to proceed. In the CAPM, the expected return on a firm’s equity can be re-expressed

equivalently as a weighted average of the risk-free rate and the expected market return,

where the closer is a given firm’s β to unity (i.e., the closer it is to being “average”) the

lower the implied weight on the safe rate. Regulated industries are unlikely to be “precisely”

average, with a beta of unity; but nonetheless the dominant element in their cost of capital

will always be the expected market return, with a distinctly smaller role for the risk-free

rate. This will also generally be the case even in alternative, more complicated asset pricing

models.

The relatively greater importance of the market return is fortunate for the regulators,

since we argue that there is considerably more uncertainty about the true historic risk-free

rate, and hence the equity premium, than there is about the market return itself. The historic

size of the equity premium is still the subject of considerable puzzlement and controversy

amonst academics; but this is largely due to the historic behaviour of the risk-free rate

(proxied by the short-term interest rate). In contrast, we summarise a range of evidence

that the equity return has, over reasonably long samples, been fairly stable both over time,

and across different markets.

Before examining the data, we note that care should be applied as to whether returns

are being measured using arithmetic or “geometric” averaging. The former is conceptually

superior, though possibly less stable. The most crucial thing is to be aware that the difference

between the two measures can be significant—as much as two percentage points or more.

Both on a priori grounds, and on the basis of evidence, our strong view is that estimates of

both the equity return and the risk-free rate should be formed on the basis of international

evidence, not just from the UK experience. We examine a range of empirical issues and

estimates. Our central estimate of the cost of equity capital, derived from a wide range of

markets, is around 5.5% (geometric average), and thus 6.5% to 7.5% (arithmetic average).

We cannot, however, be at all confident that these estimates are precisely correct: 95%

confidence intervals are, at a conservative estimate, of up to two percentage points either

side of the point estimates.

Problems in assessing historic mean values of the safe rate imply that estimates of the
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future risk-free rate (that are, as we have noted, fortunately of distinctly lower importance

for regulators) should probably be derived in a forward-looking way from current rates.

However, in so doing, account should be taken of forecast future movements of short-term

rates, derived both from market data and published forecasts. A common estimate of the

equilibrium risk-free rate would be of the order of 2 1/2%. Using this figure, the implied

equity risk premium is of the order of 3 percentage points (geometric) and 4–5 percentage

points (arithmetic).

1.3.2. Asset Pricing Models

The Capital Asset Pricing Model (CAPM) is still widely used to estimate firms’ costs of

capital. There is considerable evidence of empirical shortcomings in the CAPM; but its clear

theoretical foundations and simplicity contribute to its continuing popularity. In Chapter 3

we examine a range of competing models.

The CAPM is a linear model: i.e., the expected excess return on any given asset vs

the risk-free rate is in fixed proportion to the expected excess return of the market, with

the asset’s “beta” determining the degree of proportionality. The alternative of nonlinear

models of asset pricing (in which this proportionality does not hold) has not achieved the

popularity of the CAPM. There are several reasons for this. The most important is the

problem of ‘data overfitting’—fitting the sample data “too well”, so that both systematic

and entirely random factors are explained by the model. Nonlinear models are particularly

prone to this temptation. The problem is compounded by the absence of any one method

that can test for the problem of overfitting. In addition, in many cases a nonlinear model can

be approximated well by a linear model. Finally, recent research suggests that a carefully

specified “conditional CAPM” —i.e., one in which the parameters of the model vary over

time—will usually perform better than a nonlinear model.

Such conditional models, in which the parameters are time-varying, have been the focus

of much recent work. As with nonlinear models, the problem of data overfitting is present;

and there is no test to assess the extent of the problem. In addition, there is no test available

to assess whether the way parameters are allowed to vary has been done correctly. Despite

the large amount of work in the area, the methodology is some way from being agreed and

5



testable.

Probably the most popular competitor to the CAPM has been in the form of linear

multifactor models. These, in contrast to the CAPM, suppose that there is more than one

factor driving asset returns. Models along these lines have received considerable attention,

particularly since the influential work of Fama and French. The standard difficulty with

multifactor models is the satisfactory identification of the factors. As in the case of other

competitors to the CAPM, multifactor models have been criticised for overfitting and data

mining.There has been, for example, a considerable debate about whether the two additional

factors that Fama and French have focussed on - one, an indicator of how returns vary with

firm size, the other, of how returns vary with “value” (proxied by the ratio of book value to

market value) - are robust in other time periods and markets. While both can be shown to

have strong explanatory power for asset returns on a period by period basis, the key issue is

whether these factors are, on average “priced”: i.e., whether the risk premia associated with

these factors are clearly statistically significant. We present some evidence that they are

not, especially when the sample period is extended to include later data. If the additional

factors do not have statistically significant risk premia, multfactor models reduce, in effect,

to the CAPM.

In summary: the empirical shortcomings of the CAPM are known. Alternative models to

address this issue have their own shortcomings—weak theoretical foundations and empirical

challenges. In our view, there is at present no one clear successor to the CAPM for practical

cost of capital estimation. We do however feel that alternative models provide helpful insights

into the points of vulnerability of the CAPM, and may also provide information on the

robustness of the CAPM beta.

1.3.3. Beta Estimation

In Chapter 4 we examine practical issues associated with estimating the CAPM “beta”. We

illustrate these issues with a practical example: we estimate β for British Telecom, using a

range of different techniques.

There is a case to be made for using daily, or perhaps weekly, data rather than monthly
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data in estimating beta. For a share where trading is not significantly thinner or thicker

than for the market as a whole, using daily data has real advantages.

But where there may be a lag between the impact some events have on a particular share

and the market in general going to lower frequency data can help. If one had to use the same

estimation frequency for a very large number of different companies there is an argument

that it makes sense to go to weekly or monthly data because some stocks really take time to

catch up with general market news.

But regulators do not need to use the same frequency of data for estimates of different

companies (unlike a commercial provider like the LBS which has standardised procedures and

runs an automated service where all companies betas are calculated in the same way using

50 monthly observations). We conclude that using daily data may be right for many—but

not all—companies

Adjusting standard errors for heteroskedasticity and serial correlation is important. For-

tunately this is now a standard option in most econometric packages.

A case can be made that a portfolio which reflects the mix of assets of the typical stock

holder in the company should be used as the ”market portfolio”. For large UK companies

whose shares are largely held by UK investors this implies a market portfolio with about

70% of its weight on UK assets and 30% on overseas assets. All returns should be in sterling.

We also discuss the issue of “Bayesian adjustments” to beta, that allow for the fact that,

in the absence of better information, the best guess for any firm’s beta must be unity (the

beta of an “average” firm). While such adjustments are correct in principle, in practice this

may not make much difference if daily data are used because the resulting estimates of beta

are typically very precise. With monthly data the Bayesian adjustment is likely to be more

significant.

1.3.4. Consistency

Once the key elements of an asset pricing model (e.g., within the CAPM, the “common

components” of the risk-free rate and the market return, together with the asset-specific
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beta) have been estimated, they can be used to determine the appropriate form and level of

regulation for a particular industry. We feel it is appropriate that regulators should ideally

take a consistent approach to the way these key elements are measured.

Typically, however all elements are estimated with error: that is, any point estimate is

accompanied by a range of uncertainty (or “confidence interval”) which can be large. In

Chapter 5 we ask: should the regulator use just the point estimate to set e.g., a price cap?

Or should the uncertainty associated with the estimate also be reflected in the regulatory

decision? And should all regulators respond to this uncertainty in the same way?

There are two extremes that the regulator will try to avoid. The first is setting the price

cap too high, and so allowing the regulated firm to over-price. The second is setting the

price cap too low, and so discouraging the regulated firm from undertaking efficient levels

of investment, for example. If the first factor is the more important consideration for the

regulator, then this should imply setting a low price cap. If the second factor is dominant,

then the regulator will set a relatively high price cap. Which factor is the more important

depends on the fine detail—the exact structure of costs and demand—of the industry.

These facts can be phrased in an alternative way by defining the effective cost of capital

estimate to be the level of the cost of capital that should be used by the regulator in setting

the price cap. A higher price cap corresponds to a higher effective cost of capital. Our

analysis shows that the effective cost of capital estimate that should be used by a regulator

will depend on demand and cost conditions, as well as the point estimate and error in cost

of capital estimation. Therefore two regulators who share the same point estimate and

confidence interval for the costs of capital for their regulated firms will, in general, choose

different effective costs of capital for price cap purposes, to reflect the demand and cost

characteristics of the firm that they regulate.

1.3.5. Regulatory Risk

In Chapter 6, we analyse three questions. First, what is the effect, if any, of regulatory

inconsistency on a firm’s cost of capital? Secondly, in what ways can different forms of

regulation affect a firm’s cost of capital? Finally, how will a firm react to regulation that
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affects its cost of capital?

A common concern among those involved in regulation is that the regulator can itself

introduce risk through unpredictable or unjustifiable regulatory intervention. We argue that

this concern is largely misplaced. The central message of asset pricing theory is that only

factors that co-vary with some systematic risk factor (eg, the market portfolio in the CAPM)

affect a firm’s cost of capital. Hence ‘regulatory risk’ arises only when the regulator’s actions

introduce systematic (i.e., non-diversifiable) risk. Any regulatory action that has an effect

that can be diversified does not contribute to risk. True regulatory risk arises only when

the regulator takes actions that cause the returns of the firm to be correlated with some

systematic risk factor. A prime example of this is when a regulator decreases a price cap in

response to a macro-economic shock that increases the profit of a firm.

Nevertheless, regulation does affect a firm’s cost of capital by affecting the way a firm’s

profits vary with undiversifiable risks (such as macro-economic shocks). We show, in a

simplified model, that the beta of a firm that is subject to cost uncertainty is increased by

price cap regulation. In contrast, the beta of a firm that is subject to demand uncertainty

is decreased by price cap regulation. In both cases, the change in beta is a result of the

fact that the firm’s ability to respond to undiversifiable shocks is limited by the price cap

regulation. Cost pass-through can mitigate the effect in the case of cost uncertainty. The

firm itself can offset this effect of regulation through its choice of activities or projects. In

fact, we show that a regulated firm when it is faced with cost uncertainty will tend to choose

projects with lower betas; and, when faced with demand uncertainty, will tend to choose

projects with higher betas.

One implication of this is the a firm’s short-run and long-run betas are likely to be

different. With cost uncertainty, a firm’s short-run beta (when it is less able to choose its

project freely) will be relatively high; over the long-run, however, when it is able to choose

its project, its beta will be lower. (The converse holds for demand uncertainty.)

An important issue highlighted by this analysis is that the type of uncertainty faced

by a firm is an important determinant of the effect of regulation on its beta. Only non-

diversifiable risk is important; and it is crucial to know whether the risk is on mainly on the

cost or demand side.
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2. The Common Components of the Cost of

Equity

2.1. The Weighted Average Cost of Capital

The weighted average cost of capital (WACCi) for a given firm i, is the average rate of

return required by a company’s investors, whether in its debt or its equity. A standard way

to express this is:

WACCi = gi.R
D
i + (1 − gi)R

E
i (2.1)

where: gi is the proportion of debt finance (or ’gearing’); RD
i is the required rate of return

on debt;1 − gi is the proportion of equity finance; and RE
i is the required rate of return on

equity.

Both RD
i and RE

i are assumed to be required rates of return after tax (thus the required

return on debt is net of any impact of tax shelter).

2.1.1. The Cost of Debt

This study does not focus to any great extent on the cost of debt, RD
i , given the rela-

tively minor problems of measurement, since most large quoted firms with non-zero gearing

have sufficiently large volumes of marketable debt outstanding to enable at least a ballbark

estimate of the firm-specific cost of debt. A number of caveats are however worth noting:

• Strictly speaking RD
i should measure the (unobservable) expected return on the firm’s
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debt, which is not identical to the observable yield, due to default risk: ie

RD
i = (1 − π)Y D

i (2.2)

where π is the probability of default, and Y D
i is the observable yield on firm i’s debt..

However, default probabilities can be estimated fairly straightforwardly from published

default rates on debt of a similar credit rating: such data are readily available from

credit rating agencies. For most regulated utilities this adjustment is likely to be fairly

minor.

• Even after this adjustment, this measures the average cost of debt, when what is

strictly required is the marginal cost. Theory would suggest that the marginal cost

will be greater than average, due to increasing default risk as leverage rises. But, again,

this form of bias is likely to be fairly small at the levels of gearing observed for most

regulated firms.

• If assumptions are to be made over a reasonably long horizon, it is not appropriate

simply to assume that the cost of debt will remain constant, since the general level

of interest rates at the relevant maturity may well be forecast to move up or down in

the future (for a further discussion of this issue, see Section 2.5.2 below). A further

adjustment may therefore be required for future forecast movements in riskless rates

(whether long- or short-term), holding the relevant premium constant.

• While the tax shelter on debt is normally calculated as simply 1− the corporation tax

rate, it has been argued that this may overstate the tax bias compared to equities,

since there may also be explicit or implicit subsidies to equity returns.1

2.1.2. The Cost of Equity

All firms are different. But a central element in finance is that, despite their differences, a

significant element in the cost of raising equity finance is common to all firms. By way of

illustration, the commonly used Capital Asset Pricing Model (CAPM) of Sharpe (1964) and

1This issue is however well dealt with in standard finance textbooks. See, for example, the treatment in
Copeland and Weston (1992), Chapter 13.
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Lintner (1965) (on which more below in Chapter 3) assumes that the cost of equity for firm

i, is the expected return on investing in a single share in that firm, in turn given by:

E(RE
i ) = Rf + βi (E(Rm) − Rf ) (2.3)

where Rf is the (assumed fixed) return on a safe investment, and Rm is the return on

investing in a market index.

In the CAPM, therefore, the only element in the cost of equity specific to the firm is its

“CAPM beta”, βi; that captures the sensitivity of the firm’s equity to the “systematic” risk

captured by the excess return on the market index. While any given firm will also have an

element of idiosyncratic risk (i.e., not correlated with the market return), this will not, in

equilibrium, be priced by the market.2

While the CAPM itself has come in for criticism (that we discuss at some length in

Chapter 3) for overly simplifying the nature of responses to systematic risk, it is fair to say

that virtually any asset pricing model that is used to derive an appropriate estimate of the

cost of capital for regulated industries must inevitably build on estimates of the common

components that feed into the CAPM itself.

2.1.3. Defining the Common Components of the Cost of Equity Capital

It is standard usage to follow the CAPM specification, as in (2.3) by building up the cost of

equity capital from the two elements therein: the risk-free rate, Rf and the expected equity

premium, E(Rm −Rf .). A point that we shall stress at various points in this chapter is that

this approach is not necessarily the most efficient way to proceed.

These two elements can, instead, identically be expressed in terms of of the two underlying

2The intuitive rationale usually presented for this is that, in a sufficiently well-diversified portfolio (i.e., in
which portfolio shares become sufficiently small) , the impact of idiosyncratic risk on any individual investor
is negligible. While this rationale is correct for some asset pricing models, such as the Arbitrage Pricing
Theory of Ross (1976), it is not actually required in the CAPM, which derives its key features from an
assumption of marginal pricing in the neighbourhood of a general market equilibrium in which all assets are
willingly held. This requires the representative investor to have portfolio shares equal to asset shares in total
market value – these need not necessarily be negligibly small.
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returns, Rf and E(Rm).The latter is of cost the cost of equity capital for the “average”

firm (i.e., a firm with a beta of unity in the CAPM).We shall argue that this alternative

decomposition while, obviously definitionally identical, both provides important insights,

and a more practical approach to calculating the cost of equity capital, for two key reasons.

First, in the the CAPM pricing equation, (2.3) the expected return on a firm’s equity

can be re-expressed equivalently as a weighted average of the the risk-free rate (with weight

1 − βi) and the expected market return (with weight βi)

E(RE
i ) = (1 − βi)Rf + βiE(Rm) (2.4)

thus, the closer is a given firm’s β to unity (ie, the closer it is to being “average”) the lower

the implied weight on the safe rate. Regulated industries are unlikely to be “precisely”

average, with a beta of unity; but nonetheless the dominant element in their cost of capital

will always be the expected stock market return, with a distinctly smaller role for the risk-

free rate. This will also generally be the case even in alternative, more complicated asset

pricing models.3.

Second, we shall argue that there is reason to view the expected market return (hence

the average cost of equity) as both more explicable in terms of underlying theory, and more

stable over long historical samples, than the return on ”safe” assets. Given the relative

weightings on the two returns implied by (2.4), this is, for our purposes, fortunate. But it

also implies, as we shall see, that the standard practice of building up the average cost of

equity by adding an estimate of the equity premium to an estimate of the safe rate may be, at

best, a not particularly efficient way to proceed, and at worst, a source of misunderstanding

and errors. We shall return to this theme later in the chapter.

3Indeed, as we discuss below, in Chapter 3, Fama & French’s (1992,1996) empirical implementation of
Ross’s (1976) APT model tends to point to estimates of β i for almost all firms that are typically insignificantly
different from unity, implying no differential role at all for the risk-free rate.
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2.2. The Determination of the Common Components: Theory

As Cochrane (1997) has pointed out, neither the standard CAPM, nor its more recently

developed alternative asset pricing models, are designed to explain the common components:

these are simply used as inputs to such models. To find any such candidate explanation, it is

necessary to look deeper at the fundamental determinants of asset prices: the “Consumption

CAPM”, or some variant thereof.

Since Mehra & Prescott (1985) and Weil (1989) it has been established that simple

versions of the consumption CAPM model signally fail to explain observed values of either

the risk-free rate or the equity premium. As we shall see below, however, a feature of the

model that it is less frequently acknowledged is that there is no such clear-cut failure of the

model to explain the market return (the cost of equity) itself.

In order to understand the nature of the “equity premium puzzle” and “risk-free rate puz-

zle” and the associated debate on their empirical magnitudes, it is worth briefly summarising

the underlying basis in theory.

Mehra and Prescott’s original paper in 1985 setting out the equity premium puzzle arose

out of what seems, in retrospect, a very simple idea. They asked, in effect, whether historic

returns on stocks and safe assets could be reconciled with a model of a single “representative

investor” (whose consumption could be represented by the average consumption level in the

whole economy) who maximises utility over time, by choosing between various alternative

assets.

A common misperception of the relationship across different assets is that rates of return

depend simply on the relative volatility of their rates of return. In fact, standard theory

suggests that they should depend on the correlation of these returns with some benchmark.

In the standard CAPM, this is the market return; in the consumption CAPM it is the

marginal utility of consumption.

As in most of economics, the rationale for this comes from the idea that someone who

is maximising their utility will do so by equalising, at the margin, the gains and losses from

any small change in anything they choose. If the gain from a small change would precisely
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offset the loss, then, by implication, they must have the optimal amount of that particular

thing.4

This general principle can be applied to the choice between consuming a pound today,

and investing that same pound in any given asset for, say, a single year. The cost to giving

up a pound today is straightforward, and known: it will be equal to the marginal utility of an

extra pound’s worth of consumption today. In an uncertain world, the gain from investing

in the asset will be uncertain. It will be equal to the expected value of:

(1+Rj) × marginal utility of an extra pound of consumption next year

where Rj is the return on the jth asset next year.

If all investors can be represented by a single representative investor, then the expected

return on asset j set by financial markets must be just high enough to make that investor

indifferent between holding the asset and not holding it.

If there were no uncertainty, then all assets would offer the same return, that would

simply be determined by the ratio of the marginal utility of an extra unit of consumption

today to the marginal utility of an extra unit of consumption next year.

With uncertainty, things are more complicated. If the return on asset j is uncertain, the

return a representative investor would have been happy with in a certain world may not be

enough. This will be the case if, for example, the return on the asset and the consumer’s

marginal utility next year are negatively correlated. This will depress the expected benefit

from investing in that asset, since times when the rate of return is high will be times when the

marginal utility of an extra unit of consumption is low, and vice versa. Since it is standard

to assume that marginal utility declines as consumption rises, the counterpart to this is that

assets that yield higher-than-expected returns when consumption is higher than expected

(hence when an extra unit of income is less valuable) must offer higher returns on average.

The intuition for this is that such assets are the opposite of an insurance policy for

consumption: they pay out when consumption is already high, rather than when it is low.

4Assuming that preferences are “well-behaved”, i.e. that there is a unique optimal choice.
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Risk-averse individuals will normally pay for insurance; they therefore should rationally

expect to be rewarded for “anti-insurance”.

This offers a rationale for why stocks should yield higher returns than safe assets (which,

if they are truly safe, should have a zero correlation with consumption) since good news for

consumption is normally accompanied by good news for the economy as a whole, and hence

usually implies good returns on shares.

Mehra and Prescott’s insight was to point out that while available data were consistent

with the qualitative features predicted by theory, the model they used did not offer a rationale

for the magnitude of the gap between returns on stocks and safe assets. The observed

covariance between stock returns and aggregate consumption should essentially be the only

determinant of the equity premium. But this covariance is rather low: hence the only way

that the equity premium can be explained is by assuming that marginal utility varies a lot in

response to small changes in consumption. By implication, risk aversion must be very high.

A simple measure of risk aversion, used by Mehra and Prescott and most subsequent

researchers, is the coefficient of relative risk aversion (often called γ). This captures the extent

to which the representative consumer wants to have smooth consumption, both over time,

and in different “states of nature”. Someone who wants very smooth consumption will be

very risk-averse – they will be prepared to pay a lot to insure themselves against fluctuations

in their consumption. The higher is γ, the less the consumer values any marginal increase in

consumption above this stable level., and hence the more they will pay for insurance. They

will also be less willing to substitute consumption across different points in their life.5 Most

economists have concluded that a reasonable value for γ is of the order of 1 to 3 or 4, based

on observed attitudes to risk in other contexts. But to match precisely the observed equity

premium in Mehra & Prescott’s sample period, γ would need to have been of the order of

18 or more.6

While significant (and reasonable) doubt has been cast on the original estimates of the

equity premium used by Mehra and Prescott (now generally agreed to be an over-estimate),

5In the standard model, the elasticity of intertemporal substitution is given by 1/γ, so a higher value of
γ implies a preference for smoother consumption over time.

6For helpful numerical illustrations of both puzzles, see Kocherlakota (op cit) or Campbell, Lo and
MacKinlay (1997, Chapter 8).
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Kocherlakota (1996), Campbell (2001a) and many others have concluded that the “equity

premium puzzle” still remains, since all historically based estimates of the premium are

significantly higher than the fraction of a percentage point that would be predicted in the

Mehra-Prescott model.

Alongside the equity premium puzzle, Weil (1989) established that there is an equivalent

degree of puzzle about the determination of the risk-free rate, since in the standard model,

the high required values of γ can only be reconciled with rather low historic average risk-

free rates if the representative investor is assumed not to have a relative preference for

consumption today over consumption tomorrow, as in the standard model, but to have the

reverse order of preference – an assumption that appears massively counter-intuitive. This

is the “risk-free rate puzzle”.

It can indeed be argued (as, for example, does Kocherlakota, 1999) that the equity

premium puzzle and the risk-free rate puzzle are very close to being two sides of the same coin.

While the standard theory applied by Mehra and Prescott has major problems explaining

the relative historic returns on equities vs safe investments, this is largely because it fails to

explain the low absolute returns on safe assets. In contrast, it is not particularly hard to

derive estimates of the expected stock return itself that are consistent with the theory.

Figure 2.1 illustrates, using data on US consumption growth, the volatility of stock re-

turns, and the covariance of aggregate consumption with stock returns, taken from Campbell,

Lo and MacKinlay (1997), and their log-linear calibration of the Mehra-Prescott model. The

chart plots the predicted expected returns on stocks and the safe asset, for different values

of γ, the coefficient of relative risk aversion.7 The chart shows that it is quite easy to de-

rive expected stock returns consistent with historical averages (discussed further below), for

fairly modest values of γ. But it also illustrates the joint nature of the equity premium

and risk-free rate puzzles: the implied risk-free rate is much higher, and hence the implied

premium is much lower, than in the data.

The intuition behind the chart is that, supposing investors were risk-neutral (γ=0, or

linear utility), but still had a relative preference for consumption today over consumption

7Using Campbell et al ’s equations 8.25, 8.26, the assumption of a subjective discount rate (δ in Campbell
et al) of 0.98, and the properties of log-normal distributions.
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Figure 2.1: Expected Returns Implied by the Consumption CAPM

tomorrow (i.e., they were “impatient”) This would imply that both stocks and the safe asset

would still need to yield a positive return in equilibrium.

If risk aversion (i.e., concave per-period utility) enters the picture, it has two effects. The

first is that, with growing consumption, investors, who, other things being equal, prefer a

smooth path of consumption over time, need to be persuaded to postpone future consumption

by higher returns. The more concave their utility, the more they need to be persuaded. This

factor explains the upward slope of both lines. The second is that, at the same time, as

noted above, the covariance of stock returns with consumption implies investors will need a

relative rise in the stock return. While the chart shows this qualitative effect, the implied

gap is not consistent with the data: the implied risk-free rate is much higher than in the

data. Thus the chart illustrates both the equity premium and risk-free rate puzzles.

We should stress that this chart does not imply that the Consumption CAPM can nec-
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essarily explain historic average stock returns: it simply says that there is no obvious incon-

sistency between data and theory. The clear inconsistency between theory and data relates

to the safe rate, and hence the equity premium.

2.3. The Common Components: From Theory to Data and Back Again

The failure of the consumption CAPM to explain the equity risk premium and the risk-free

rate, is at the heart of the empirical debate about their true values, since priors on true values

play a key role in informing statistical inference. It is extremely rare that economic data

will precisely match the predictions of theory; but economists tend to feel most comfortable

when they can at least conclude that the theory is not clearly rejected. Thus theory may

point to a given parameter, or combination of parameters having a particular value - zero or

one, for example. Empirical estimates will never match these expectations precisely. But if,

on standard tests, the hypothesised value of the “true” parameter cannot be rejected by the

data, economists will usually act on the assumption that the best guess for the true parameter

is its hypothesised value based on theory, rather than the actual historical estimate.

Unfortunately, in the case of the equity premium and the risk-free rate the only clear-

cut prior in town has been so convincingly rejected, at least by historic data, that most

economists8 have concluded that this option is not open to them. To quote Dimson, Marsh,

and Staunton (2001c)

Though some writers may give another impression, there is no single figure

for the risk premium that theory says is ‘correct’.

The original Mehra & Prescott paper has spawned a vast academic literature, both

theoretical and empirical, that has sought to resolve the puzzle either by casting doubt on

the data, or by adjusting the model to be consistent with the data.

We shall discuss below a range of possible adjustments to data for the risk-free rate and

the equity premium; but none of these are anywhere near large enough to resolve the original

8But, as we shall see below, not all.
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puzzle, at least on the assumption that underlying behavioural parameters are reasonably

stable (Kocherlakota, op cit ; Campbell (2001a)).

The alternative approach, of adjusting the model to be consistent with the data, has

spawned a number of papers that modify the Mehra & Prescott model along one dimension

or another, and thereby attempt to “resolve” the puzzle. This was, indeed, what the original

authors themselves had initially regarded as most likely:

Our conclusion is that most likely some equilibrium model with a friction will

be the one that successfully accounts for the large average equity premium.

Kocherlakota (op cit) and Campbell (2001a) provide useful summaries of the literature

that has attempted to rise to this challenge. Examples are:

• Campbell (1993) examines the assumption that aggregate consumption is a poor proxy

for the consumption of the true “representative investor” whose preferences are used

to price financial assets. If the true representative investor is modelled as a rentier

whose consumption path tracks changes in the value of the stock market precisely, this

can in principle raise the covariance of consumption and market returns, and thereby

lowers the required assumed value of γ to more plausible levels, in line with the earlier

analysis of Friend and Blume (1975). 9

• Campbell and Cochrane (1999) examine the impact of assuming that consumers form

consumption “habits” that tend to make them far more risk averse at points when con-

sumption is close to what they have come to regard as a minimum level of consumption:

it thus generally implies a counter-cyclical equity risk premium. Unfortunately, this

model singularly failed to explain the rise in the stock market in the 1990s.

• Constantinides, Donaldson, and Mehra (2002) show that high premia can result from

liquidity constraints. Consumers who are early in the life cycle would ideally wish

to borrow, but cannot do so: as a result, the safe rate is depressed, and the equity

premium raised, below what it would be in the absence of credit constraints.

9However, this result only holds if market returns are unpredictable; allowing for predictability in returns
(an issue discussed further below, in Section 2.4.5) pulls implied values of γ up significantly.
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• Kocherlakota (op cit) discusses theories of the precautionary motive that may also help

to explain the risk-free rate puzzle by introducing an additional motive for holding safe

assets, arising from non-diversifiable labour income risk.

Although all of these models have some attractive and plausible features, none individu-

ally appears to provide a fully consistent resolution of the puzzles, leading Kocherlakota (op

cit) to conclude that both remain puzzling.

A major problem associated with all these proposed resolutions is that, since the models

used are, effectively, designed to match the data, they are very hard to test. The problem is

not dissimilar to the “data mining” problem in other applied work. Economists know there

is a puzzle in the data, and therefore seek to design models that explain away the puzzle:

i.e., they effectively engage in “theory mining”. If they did not know about the puzzle, they

might look in other directions for modifications to their models, that might quite possibly

imply that the puzzle would get bigger, not smaller.

It must be acknowledged that, in the face of such problems of inference, there is still

only a very limited degree of consensus in the academic world on the equity premium and

risk-free rate puzzles. This lack of consensus is well illustrated by the views of the two

original authors who identified the puzzle in the first place. While Mehra has concluded that

the puzzle requires some modification of the underlying theoretical model (as for example,

in Constantinides, Donaldson, and Mehra (2002), op cit), on the assumption that there is

a significant equity premium requiring explanation, Prescott has recently concluded that it

is reasonable to treat the equity premium as if it were so close to zero as to be empirically

negligible (McGrattan and Prescott (2001)—discussed further in Section 2.6 below).
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2.4. Estimating the Common Components from Historic Averages

2.4.1. Background and Caveats

When Mehra and Prescott (1985) first formulated the equity premium puzzle, they used

an estimate of the arithmetic risk premium10 of equities over cash of just over 6%, based

on realised returns over the period 1889-1978. This figure was subsequently widely quoted

in both popular and academic discussions, and even larger figures have also been quoted,

by extending the sample into the bull market of the 1980s and 1990s, during which equities

outperformed cash by a wide margin. It is probably fair to say that there is now a reasonable

degree of consensus that these initial estimates were almost certainly overstated; however

there is less consensus on the extent of this overstatement.

Before proceeding to examine this more recent evidence, some caveats are in order.

First, although it is common to estimate risk premia by using historic average returns, it

is worth considering for a moment the problems involved in so doing. A true measure should

capture the risk premium that investors are expecting to receive from equities, compared to

safer assets, but this must obviously be unmeasurable. The only thing that can be measured

is the returns that they have actually received in the past.

It is evident that even over quite long periods, realised returns need not provide any

relation to the expected premium. If they did, the experience of the bull market of the

1990s would have implied a risk premium of equities over cash of around 15%, switching to

a large negative risk premium in the subsequent bear market of the early years of the new

millennium. This would be manifestly absurd. There is no evidence that rational investors

were expecting to receive such returns in advance. A significant element in the returns they

actually received was therefore almost certainly due to expectational errors.11

This problem can only be overcome, if at all, by assuming that, if a long enough period

10See Section 2.4.2 for a discussion of alternative averaging procedures.
11It is important to stress that the theory of rational expectations is perfectly consistent with investors

making errors, as long as their previous expectations were formed rationaly - ie, using all available infor-
mation, as efficiently as possible For arguments that expectational errors have had a significant impact, see
Dimson, Marsh, and Staunton (2001a) and Fama and French (2001)
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is chosen, pleasant mistakes in predicting returns, such as those of the 1990s, will be offset

by unpleasant ones, as more recently. Unfortunately, it is quite possible that historic errors

do not always so conveniently average out at zero. And the problem is compounded if, as is

often assumed, the underlying thing being measured is itself not constant.

Second, in assessing historic averages of the equity premium and the “safe” return, it is

important to treat them consistently. Thus, for example, some arguments, examined below,

that the historic risk premium overstates the true risk premium due to one-sided inflation

surprises that have depressed the historic safe rate, imply precisely offsetting errors in the two

elements, and thus should not affect the estimate of the overall cost of equity capital.12 For

this reason, in what follows we examine evidence on both simultaneously (or, equivalently,

on the premium and the return on stocks).

Third, given the highly integrated nature of modern capital markets, there is no reason to

restrict attention to data solely from the UK market, and on occasion to do so can actually

produce distortions. There is a strong a priori case for treating the common components of

the cost of equity as being determined in world markets; and, as we shall show, there is also

a reasonable amount of evidence in favour of this.

Fourth, different studies report different measures of historic average returns. Before

proceeding to examine the historic evidence, we thus need to digress briefly in dealing with

the (often quite important) quantitative differences between these alternative measures.

2.4.2. Geometric vs Arithmetic Averaging, and the Role of Return Predictability

2.4.2.1. Definitions Let Rjt be the return on some financial asset, defined by

1 + Rjt =
Pjt + Djt

Pjt−1
(2.5)

12As a counter-example, Giles and Butterworth (2002) in their submission on behalf of T-Mobile, attempt
to have their cake and eat it, by basing equity premia estimates on long historic averages in which the safe
rate may have been underestimated, but basing safe rate assumptions on recent data, thus generating a high
implied cost of equity capital.
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where Pjt is the price of the asset, and Djt is any dividend or other income generated by

the asset.

Standard theory requires that the appropriate measure of any given return used in deriv-

ing the cost of capital should be E(Rjt), i.e. the true arithmetic mean.13 This requirement

holds whatever the nature of the process that generates Rjt.

In contrast, historical studies frequently quote two alternative, but closely related, mea-

sures. One is what is often rather loosely described as the “geometric mean”; the other is

the arithmetic mean of the logarithmic return.

It is very commonly assumed that returns are lognormal (inter alia, this deals with the

skewness of returns, and rules out returns of less than –100 %), i.e., letting lower case letters

define log returns,

rjt ≡ log(1 + Rjt) ∼ N(E(rjt), σ(rjt)) (2.6)

but standard properties of the lognormal distribution imply that

1 + E(Rjt) = exp

(

E(rjt) +
σ2(rjt)

2

)

(2.7)

implying, to a linear approximation the following relationship between the arithmetic mean

return, and the arithmetic mean log return

E(Rjt) ≈ log (1 + E(Rjt)) = E(rjt) +
σ2(rjt)

2
(2.8)

The latter is in turn closely related to the “geometric mean” return,14 G(Rjt) defined by

1 + G(Rjt) = exp(E(rjt)) (2.9)

But, again, to a linear approximation,

G(Rjt) ≈ log(1 + G(Rjt)) = E(rjt) (2.10)

13See, for example, the treatment in Copeland and Weston (1992) Chapters 7 and 13.
14More strictly defined as the compound average return, constructed in the data as the geometric average

of 1 + Rjt, minus one. But, for brevity, we follow standard practice in referring to this magnitude as the
geometric average.
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with the omitted terms biasing the approximation downwards by a fairly trivial amount.15

The geometric mean return is a natural metric of returns viewed from the perspective of an

investor: an investment with a positive geometric mean return will grow over time.

Thus, as an illustration, suppose that the volatility of log returns is 0.2,16 a rough ballpark

figure for a range of equity markets, according to figures from Dimson, Marsh, and Staunton

(2001a) cited below in Section 2.4. The implied difference between the arithmetic and log

(hence geometric) means will approximately equal 0.22/2 = 0.02, or two percentage points.

The difference between the two measures of mean returns is therefore non-trivial. For higher

estimates of volatility, the gap rises sharply: eg, for volatility as high as 0.3, the gap increases

to approximately 0.32/2 = 0.045, or 4 1/2 percentage points.

In contrast the difference between mean log returns and the geometric mean return is

very small: if, for example, E(r) =0.06, the compound average return will equal 6.18%.

Note that the relationship between geometric and arithmetic average returns implies the

somewhat counter-intuitive result that, in principle, an asset may have a negative geometric

mean return (ie, over long periods, an investor in the asset will lose money), but at the same

time a positive arithmetic mean return.

2.4.2.2. The Impact of the Choice of Time Period One issue that is frequently

raised is whether the choice of time period can affect the estimate of E(Rjt), since arguably

regulation should be framed in terms of fairly long periods. It turns out that the crucial

issue is, as in many contexts, whether returns are predictable or not. Thus, consider the

expectation of the five year return, under the same assumptions of log-normality

1 + E(Rjt(5)) = exp

(

5E(r) +
σ2(Rjt(5))

2

)

(2.11)

where σ2(Rjt(5)) is the variance of (non-annualised) log returns over five years. Annualising

15The mean log return is an unbiased measure of the continously compounded average return.
16Note, in passing, that the appropriate measure of volatility, σ(rjt) is the standard deviation of log

returns; in contrast σ(Rjt), the standard deviation of absolute returns will be larger.
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the five year return,

[1 + E(Rjt(5))]1/5 = exp

(

E(r) +
σ2(Rjt(5))

10

)

(2.12)

If log returns are unpredictable, then the variance of the five year log return will simply

be five times the variance of the one year return, i.e.σ2(Rjt(5)) = 5σ2(Rjt), implying that

the change of time period has no impact: the annualised expected five year return is simply

the expected one year return.

However, as Campbell (2001b) and Robertson and Wright (2002) have pointed out, if

there is predictability of returns, this can significantly lower long-horizon return variances,

compared to the random returns benchmark. As an illustration based on annual US data

from 1900-2000, Table 2.1 shows estimates derived from Robertson & Wright (op cit). The

estimated variance of one-period returns is very similar to the illustrative figure above. If

instead returns are predicted from a cointegrating vector autorogressive (CVAR) model in

which both the dividend yield and Tobin’s q have predictive power, the one year ahead

(conditional) variance is slightly, but only slightly reduced. However, consistent with much

evidence that there is greater predictability of returns at longer horizons, five and ten year

return variances are significantly lower than they would be if returns were random.17

The implication of these figures is that if they truly capture return predictability, the

gap between the arithmetic mean return and the geometric return would fall to only around

one percentage point over a five year horizon, and even less over a ten year horizon.

2.4.2.3. So Which To Use? The discussion above shows that the relationship between

geometric and arithmetic average returns:

• will only be constant over time if volatility of returns is constant;

• will only be constant across different return horizons if returns are unpredictable.

17Note that both sets of estimates also include an allowance for uncertainty with respect to the true mean
return (for simplicity the numerical example in the text ignores this issue) this means that in the random
returns case variance rises slightly faster than the forecast horizon. But the impact of the adjustment over
these horizons is quite small.
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Random Returns CVAR Ratio
1 Year 0.044 0.036 0.82
5 Years 0.222 0.118 0.53
10 Years 0.455 0.180 0.39
Source: Calculations based on estimated systems in Robertson and Wright (2002).

Table 2.1: Return Variances at Different Horizons (Non-Annualised)

Unfortunately, arguments have frequently been presented in the literature that neither

of these conditions will hold. There is no doubt that the ultimate aim must be to derive

an estimate of the arithmetic mean return, since, as noted above, this corresponds to the

theoretically desirable “true” expectation. But if the above conditions do not hold, any

presumption that, e.g., the arithmetic mean return has been stable over time must, logically

imply that the geometric mean return has not been stable over time; and vice versa. There

is no clear-cut empirical evidence, that we are aware of, that distinguishes between these two

characterisations of the data; indeed, given the degree of uncertainty in historical averages,

it would be surprising if there were. Eminent academic economists have come down on

both side of the fence. Thus e.g., Campbell and his various co-authors typically assume

lognormality, as in (2.6), and hence stability of the mean log return and the geometric

average, as implicitly, do Dimson et al. In contrast, eg, Fama and French have, in various

papers, worked on the assumption that the arithmetic mean return is stable.

Our (not very strong) preference would be to side with Campbell, since the assumption

of lognormality of returns is consistent with the feature of financial returns that they cannot

fall below -100%, but are unbounded in the opposite direction. But given the absence of

a clear consensus on the best way to model the underlying properties of returns, the only

clear-cut recommendation must be to deal consistently with the difference between the two

averaging methods, to be precise in noting which estimate is being used in any context, and

to be aware of the potentially significant differences between the two.
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2.4.3. International Evidence on Historic Returns and Premia

The advent of the LBS/ABN/AMRO database (Dimson, Marsh, and Staunton (2001a),

Dimson, Marsh, and Staunton (2001c)) has generated an abundance of new evidence on the

common components. Previous estimates had been very dependent on the US, and to a

lesser extent the UK markets. While the US market still provides the only consistent source

of data for very long runs (i.e., more than a century’s worth) of data (discussed below,

in Section 2.4.4) a number of authors had cast doubt on whether its experience was truly

representative. However, until recently, mult-country evidence such as that of Goetzmann

and Jorion (1999) was equally plagued by problems of sample inconsistency, and, crucially,

absence of data on total returns (as opposed to just capital appreciation).

Figures 2.2 and 2.3 summarise the key features of the international evidence, based on

returns from 1900–2000, from Dimson, Marsh, and Staunton (2001a). The key features to
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note are:

• While there has been a reasonably wide range of experience in the countries covered,

the range of historic mean equity returns is not actually all that wide: all but three

countries had geometric (ie, compound) average stock returns in the range of 4% to

8%, and arithmetic average returns in the range 6% to 10%.

• In common currency terms, average returns follow a very similar pattern (implying

indirectly that purchasing power parity was reasonably close to holding).

• The experience of the UK, in terms of mean returns, has been close to average;18 that

of the US somewhat better than average (though not as markedly so as had been

suggested by the earlier work of Goetzmann and Jorion (1999)).

• The difference between geometric and arithmetic average returns is always significant,

and is generally distinctly larger for the poorer performing countries. The difference

reflects the fact that the standard deviation of returns for the poorer-performing coun-

tries tended to be higher than for the better-performing countries. This illustrates

the important role geometric vs arithmetic averaging can play, as discussed in Section

2.4.2. In the case of Germany, in particular, equity returns were so volatile that, while

it displayed a relatively poor performance in terms of geometric average returns, in

terms of arithmetic average returns its performance appears relatively good. In this

particular case, we would regard the relative ranking of geometric returns as more

representative.

• There is a very similar range of values for the observed geometric risk premium,19

which is in turn almost unrelated, across the cross section, with the return itself. In a

number of countries, by implication, there were common shocks to both stock returns

and returns on the “safe” asset (which was of course not at all safe at times of inflation

or, especially, hyper-inflation - a theme we revert to below, in Section 2.5.2).

18The averages shown in the chart are cross-sectional weighted averages, where each countries weight is
the average of their share in market value in 2000, and their share in GDP in 1900 (the best proxy Dimson et
al have for market weights at the start of their period). Equally weighted average returns are rather lower,
due to the impact of a number of relatively small poor-performing countries.

19We follow convention in referring to these estimates as observed risk premia, although they are of course
simply average excess returns.
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• The arithmetic risk premia are slightly negatively correlated with average returns over

the cross section: the difference reflects, again, the fact that the standard deviation of

returns for the poorer-performing countries tended to be higher than for the better-

performing countries.

• Cross-sectional differences in mean returns and excess returns are thus not explicable

by differences in volatility. Indeed the correlation goes the wrong way, implying an

that the range of associated “Sharpe Ratios” (excess returns divided by volatility) is

distinctly wider than the range of excess returns. Hence, unless representative investors

in different countries had very different degrees of risk aversion, and markets were

extremely segmented (neither of which is very plausible) this is further indirect evidence

of significant expectational errors that did not cancel out.

2.4.4. Evidence from Two Centuries of US Data

Siegel (1998), using two centuries’ worth of data for real returns on stocks, bonds and bills

in the US, has forcibly argued for the apparent stability of real returns on stocks, both in

absolute terms, and relative to competing assets. Smithers and Wright (2002) christen the

apparently stable geometric mean stock return “Siegel’s Constant”.

Figure 2.4 summarises the empirical basis for “Siegel’s Constant”, by comparing rolling

compound average real returns derived from data for the entire two hundred year period (the

use of long-period rolling returns is not essential, but helps clarify the graphical presentation).

Thus the returns for the dates shown are the compound (or “geometric”) average returns on

an investment made thirty years earlier.

The chart helps to provide some additional insight into the large estimates of the equity

premium for a number of countries based on data for the twentieth century, discussed in

Section 2.4.3. While the thirty year stock return has moved within a relatively narrow

range, around what does indeed seem to be a stable mean value, real returns on both bonds

and bills appear much less stable. The low estimate of the mean real interest rate (i.e., bill

return) for the twentieth century, of only around 1%, for example, is seen to result from a

pattern of real rates that began and ended the century at significant positive levels, offset by
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the period of zero, or negative real rates in the thirty years or so after the second world war.

In contrast, returns on both bonds and bills were significantly higher in the 19th century.

Note that if “Siegel’s constant” really were constant, or at least close to being so, this

would offer some empirical support for the argument, discussed in 2.2, that the equity pre-

mium puzzle and risk-free rate puzzles are one and the same, since there is no obvious conflict

between observed mean stock returns and the predictions of theory.

Smithers & Wright (op cit) calculate confidence intervals for the mean log stock return20

over the entire two century period, using different non-overlapping horizon returns. Table

2.2 reproduces these results. If (log) returns were strictly random, then the horizon ad-

justment should make no difference, but predictability implies non-randomness, and hence

that the confidence intervals calculated for one-year returns may be distorted. Over longer

horizons, this non-randomness is less relevant. Although the number of observations is re-

duced markedly, the associated reduction in variance more than offsets this, such that the

confidence interval for the mean return is narrower if long-horizon returns are used.

95% Lower
Bound

Mid-Point 95% Upper
Bound

¿From annual data 0.0426 0.067 0.0924
¿From non-overlapping 10
year returns

0.045 0.066 0.086

¿From non-overlapping 20
year returns

0.038 0.063 0.088

¿From non-overlapping 30
year returns

0.049 .063 0.077

Table 2.2: Confidence Intervals for “Siegel’s Constant” (the mean log stock return)

Dimson, Marsh, and Staunton (2001c) dispute the concept of “Siegel’s Constant” being

a global phenomenon, in the light of the variation across countries in their sample, as shown

in Figure 2.2.21 It is indeed almost certainly the case that, as proposed by Goetzmann and

20Assuming lognormality of returns. Given the relationships examined in Section 2.4.2, implied figures for
the geometric average would be virtually identical.

21Although it should be noted that their arguments are mainly framed in terms of the equity premium,
rather than the equity return.
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Jorion (1999) and others, the experience of the US market may overstate the true world

expected stock return, due to a form of survivorship bias. Even over two centuries there may

be an impact of non-offsetting expectational errors biasing up the US mean return, since the

extent of the success of the US economy could not have been predicted. Dimson et al ’s data,

summarised in Figure 2.2 showed that the geometric average world return over the twentieth

century was indeed around a percentage point lower than that of the US.22

Such a difference, it should be noted, lies well within the confidence interval shown in

Table 2.2, and is also consistent with other adjustments to the mean return, discussed below

(in Section 2.4.5) that take into account the possible distorting effects of the exceptional

returns during the 1990s.

With or without the adjustment to the point estimate, the relatively narrow confidence

interval for the mean real stock return are worth bearing in mind, given the point noted

in Section 2.1.2, that, for firms with beta reasonably close to unity, and with relatively low

gearing, cost of capital calculations are dominated by the assumed cost of equity, with only

a relatively small role for the safe rate, and hence for the equity premium.

It is not possible to use Siegel’s dataset to derive plausible confidence intervals for the

real returns on bills and bonds, and hence for the equity premium. The problem, is that, as

Figure 2.4 shows, there is far less evidence of stability in these magnitudes, implying that

any confidence interval derived on the assumption that their “true” values are constant is

almost certainly mis-specified.

One possible explanation for this apparent instability, noted by a number of authors is

that there have been major expectational errors in inflation – the key determinant of real

returns on these competing assets. This has of course been even more important in a number

of other countries in the Dimson et al sample, that suffered high, or even hyper-inflation

during the twentieth century. It might be that the true underlying premia were much more

stable, or even constant, once account is taken of such errors.

Pickford and Wright (2000) attempt to uncover the mean underlying premia from the

Siegel dataset, by calculating mean returns over periods in which expectational errors were

22The gap in terms of arithmetic averages was narrower, since non-US markets had higher volatility.
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probably reasonably close to zero.23 There is a slight decline in the implied mean stock

return between the 19th and 20th century (since data since 1974 are excluded in order to

avoid the possible distorting impact of the 1990s boom). In contrast, the implied expected

return on cash over the 20th century is raised by around a percentage point from its actual

average value, and the estimates of expected bond yields appear remarkably stable across

two centuries.24

Cash Bonds Stocks Geometric Pre-

mium Over

Cash

All relevant data 3.44% 4.16% 6.61% 3.17%
Only 20th Century 1.76% 4.22% 6.01% 4.25%

Table 2.3: “Expectations-Neutral” Compound Average Real Returns, and the Equity Risk
Premium.

The combination of a lower estimated stock return and a higher estimated cash return

over the twentieth century suggests that, using these estimates, the realised geometric risk

premium over the same sample, of just under 6%, is almost certainly overstated, possibly by

as much as 2 or 3 percentage points.

2.4.5. Evidence on Mean Stock Returns Allowing for Predictability and/or

“Over-Valuation” during the 1990s

Another possible source of upward bias in the mean stock return that has been put forward

is that the rise in the stock market during the 1990s was sufficiently strong as to affect even

23Inflation expectations are proxied by a univariate time series model, derived from priors consistent with
data up to that point. Thus, throughout the 19th century, and well into the twentieth, inflation expectations
are assumed to be mean zero. On the basis of annual data, this null could not have been rejected on
standard tests until after the second world war.Cash and bond returns are calculated as compound averages
over samples in which inflation expectations were realised, weighted by sample size (hence some data are
excluded from averages). Stock returns (that are arguably less affected by one-side expectational errors) are
calculated as trough-to-trough compound averages (hence data after 1974 are excluded).

24There is still a distinct difference in the implied real return on cash, but this may well reflect data
problems. Banks were more dangerous places to invest money than government bonds, up until the mid-
1930s. There is therefore a problem, during the 19th Century when short-term government paper was seldom
available, in estimating the risk free return on cash.
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long-period averages. This point is noted in the work of Fama and French (2001) discussed

below, although only in the context of the bias over the (relatively short) post-war sample.

Giles and Butterworth(2002) illustrate this for the UK by assuming that, in line with earlier

analysis of Smithers & Co, the UK market was twice overvalued at the end of the century.

Spread over the course of a century (and assuming the market to have been fairly valued

at the start of the period), this would have raised the compound average return rate by

21/100-1≈0.7% per annum: a non-trivial adjustment.

Robertson and Wright (op cit) show that a similar result can be derived for the US return,

from econometric estimates that allow for the joint determination of stock prices, dividends

and the capital stock. If “Tobin’s q” (approximately given by the ratio of the stock price

to the capital stock per share) and the ratio of stock prices to dividends per share are both

mean-reverting, then over long samples, all three series must grow at the same rate, and data

on all three series thus provide, effectively, a pooled estimate of this common growth rate.25

This in turn can be shown to imply an estimate of the mean stock return (using Campbell

& Shiller’s (1988) approximation). Table 2.4, reproduced from Robertson & Wright, shows

that this estimate is pulled downwards, compared to the mean realised log return, given that

prices at the end of the sample rose so far out of line with the other series.

The table also shows that, conditional upon the model being correctly specified (i.e.,

assuming that both ratios do really mean-revert), the resulting estimate of the mean log stock

return is very much better determined than if the mean return is estimated from returns

alone (cf. the results in Table 2.2): the 95% confidence interval for the point estimate lies

between 0.057 and 0.073 – i.e., only barely includes the realised mean return.

From returns alone From system
Point Estimate 0.073 0.065
Standard Error 0.021 0.0042

Table 2.4: Alternative Estimates of the US Mean Log Stock Return, 1900-2000

It should be stressed, however, that the predictability of returns that underpins this ap-

25There is a strong parallel with the results of Fama & French (2001), discussed below, except that they
do not exploit the pooled estimation procedure to improve the precision of their estimates.
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parent degree of parameter precision would certainly not command unanimous agreement

amongst financial economists. While there is a very large literature that assumes predictabil-

ity of returns, in recent years there has also been a steady flow of papers that have cast doubt

on this evidence, as due to data mining.26

2.4.6. Learning from the UK Experience: “Siegel’s Constant” and the Consumption CAPM

Revisited

We have seen that, while there is strong evidence, presented in Sections 2.4.4 and 2.4.5,

that the mean stock return in the extremely well-documented US market appears quite well-

determined, Section 2.4.3 showed that it is almost certainly an overestimate of the mean

historic world return. This is unsurprising, given the US’s relative degree of success over the

historic sample covered by available data.

While we advocate strongly the use of international data in assessing the true cost of

equity capital, it is worth noting, that, viewed in that context, the experience of the UK,

that appears close to the international average, may possibly also be more representative on

a priori grounds. Arguably the macroeconomic environment in the UK was least subject to

surprises over the 19th and 20th centuries. In particular it has been well-documented that

the UK’s growth of GDP per capita has been remarkably stable, at around 2%, for at least

the past two centuries. In contrast, most other countries have had periods of distinctly more

rapid growth.

However, there does seem to be mounting evidence that the rich countries, at least, have,

in the postwar era, converged on to a very similar growth path, that turns out to be very

much in line with the UK’s long-term historic average. While we would make no claim that

this reflects any deep significance about the number 2% per annum, it does suggest that

an economy that has had this growth rate for a very long time may provide a particularly

good estimate of another apparently fairly stable value: “Siegel’s Constant”, the mean stock

return.

26See Campbell et al (op cit) and Campbell (2001) for excellent surveys. Goyal and Welch (2002) is a
recent example of an attack on the predictability literature.
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We noted in Section 2.2 that, while the “Consumption CAPM” has major problems ex-

plaining the observed equity premium, it is not obviously inconsistent with the observed

mean stock return itself. That model suggests that, apart from “deep” risk aversion and

intertemporal preference parameters, and covariances, the key element determining equilib-

rium returns is the growth rate of consumption. This suggests that, if “deep” parameters

are reasonably stable, an economy like the UK, that has had particularly stable consumption

growth, in line with what now appears to be the international norm, may be a particularly

good place to look for evidence of stable stock returns.

This conclusion is if anything reinforced by the observation (suggested both by the es-

timated “expectations-neutral” stock returns shown in Table 2.3, and from other evidence,

such as that of Fama and French (2001), discussed below) that US returns in the twenti-

eth century may have been somewhat lower on average than in the nineteenth, and may

also indeed have fallen through the twentieth century, to levels not dissimilar from the UK

geometric average return of around 5 3/4%.

2.5. Forward- Vs Backward-Looking Approaches to the Common

Components

2.5.1. Forward-Looking Adjustments to Historic Returns and Premia

We have already noted that to treat historic average returns as necessarily equal to true

underlying expected returns is näive. There is however a need to distinguish between trying

to identify what the past was really like (eg, adjusting for possible one-sided inflation errors,

as described in Section 2.4.4), and arguing that, on a priori grounds, the future must be

different from the past. The latter is a much riskier enterprise, since by definition such

claims cannot be based on any data.

Some possible adjustments that have been proposed have been

• Dimson, Marsh, and Staunton (2001a) propose that arithmetic premia should be ad-

justed downwards to reflect forward-looking assessments of volatility. To the extent

that this reflects clear distortions in the historic record (eg, extreme volatility during
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hyper-inflations) this is almost certainly valid. But to the extent that it embodies

the assumption that the world is a safer place, this approach is on distinctly less firm

ground. There is indeed a reasonable amount of evidence that macroeconomic aggre-

gates like GDP became more stable in the second half of the twentieth century. But,

at least in mature markets, the evidence that stock markets, as opposed to the rest

of the economy, have got much safer, is distinctly weaker. In economies that escaped

major disruption, such as the UK or the US, there is little or no evidence of a decline

in stock return volatility.27

• A much more radical approach, also proposed by Dimson et al, is to infer that the

equity premium must have permanently fallen from the observed fall in the dividend

yield. The problem with this argument is that it is driven entirely by the rise in the

market during the 1990s. It is certainly a logically possible justification for the high

market, but the only evidence for it is the level of the market itself (see Sections 2.6

and 2.5.3 below for further discussion of interpretations of recent experience). It is in

distinct contrast to the approach of Fama and French (2001) discussed below.

• Another argument used by Dimson et al is that trading costs of forming diversified

portfolios have fallen. At the same time, however, the proportion of the population

investing indirectly in the stock market has risen enormously. The rise of 3rd party

investment, via pension funds, etc, may quite possibly have increased principal-agent

type costs for the average investor. There is certainly evidence that the costs of 3rd

party investment are distinctly non-trivial: the table below summarises data on the

costs of retail investing from James (2000) study for the FSA. Thus the case for lower

trading costs does not appear clear-cut.

• It is frequently claimed that financial liberalisation has eased credit constraints sig-

nificantly, and that this may result in a lower premium. This argument has been put

forward by e.g., Heaton and Lucas (1999). We noted in Section 2.3 that in the model of

27Fama and French (2001) note that observed volatility in the US market fell slightly in the postwar
period, but the fall was well within the confidence intervals associated with an assumed constant rate of true
volatility. Nor is there any obvious downward trend in “implied volatility” estimates derived from options
prices (see Smithers & Wright, 2000, Chapter 30).
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UK Actively
Managed

US Ac-
tively
Managed

UK
Index

US Index

Explicit Costs 1.4% 1.45% 0.98% 0.45%
Implicit Costs 1.31% 0.92% 0.88% 0.41%
Total Implicit and Explicit Costs 2.71% 2.37% 1.86% 0.86%
Upfront Charge/Bid-Offer Spread 5.34% 1.34% 2.66% 0.27%
Total (10 year average hold) 3.24% 2.50% 2.13% 0.89%
Source: James (2000)

Table 2.5: Retail Investing Costs

Constantinides et al (op cit), credit constraints may indeed help to explain the historic

equity premium, and a reduction in such constraints would indeed imply a lower equity

premium. However, this would result from a marked rise in the return on safe assets,

not from a fall in the return on equities.

Overall, the impact of such hypothesised shifts is very hard to quantify. And, crucially,

it is worth stressing that, as in the last example, if any such effects did imply a fall in the

equity premium, this need not necessarily imply a fall in the equity return: i.e., it could just

as easily imply a rise in the safe rate. Indeed, in the next section we discuss arguments that

on a priori grounds this might appear more likely.

2.5.2. Forward- Vs Backward-Looking Measures of the Risk-Free Rate

We noted in Section 2.1.2 that, for most firms with CAPM beta not too far from unity, the

risk-free rate (and hence the equity premium) plays a more minor role, compared to the

estimate of the market return itself: or equivalently the return on an equity with a beta of

precisely unity. This is fortunate, since not only are historic average values of the risk-free

rate hard to rationalise with theory (as we saw in Section 2.2); but they are also much harder

to rationalise with that average value being stable over time (as we saw in the context of the

US experience in Section 2.4.4).

Figure 2.5 shows that appealing to international evidence (taken, again, from Dimson,
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Figure 2.5: Returns on Equities and Bills, 1900-2000

Marsh, and Staunton (2001a)) does not provide much assistance. The range of mean real

returns on short-term bills over the twentieth century is actually wider than the range of

equity returns over the same set of countries, with a number of countries having experienced

negative real interest rates. The weighted average real interest rate for the Dimson et al set

of countries over the course of the twentieth century was essentially zero. As noted above,

however, arguably all of the countries in the sample suffered one-sided inflation surprises

over this period; and the particularly poor performers were typically countries that at some

point in the sample suffered particularly badly in this respect.28

In the absence of clear evidence of a stable mean over long samples, there may be better

arguments for a forward-looking approach in setting the risk-free rate. This approach is

aided, as in the case of the cost of debt (discussed in Section 2.1), by the fact that at least

28Note that data for Germany exclude the hyperinflationary years 1923/4; if these were included even the
average real interest rate for Germany would go right off the scale.
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current values of the risk-free rate can be observed directly from the data. While short-

term interest rates are still subject to inflation risk, the advent of independent central banks

has done a great deal to reduce inflation uncertainty, so at least over short horizons the

forward-looking real safe rate can be estimated with considerable reliability.

Of course, if assumptions are made about the safe rate over reasonably long horizons, it

is not sufficient simply to take a snapshot of whatever the current short rate happens to be.

Various forward-looking alternatives are available:

• Market expectations of future short rates can in principle be inferred from futures

prices. These are however known to be biased predictors of actual future spot rates,

since they arise by arbitrage across different maturities in the yield curve - they thus

also include an implicit impact of term premia. Adjustments allowing for this bias are

however relatively straightforward to calculate.

• As an alternative, or, more likely, as a complement to this approach, non-market

forecasts of future short rates are readily available, both from private sector consensus

forecasts, and from independent forecasting bodies such as the National Institute for

Economic Research.

• The availability of data on indexed bond yields also implies that, at any given horizon,

there does now exist a perfectly safe asset, in the form of an indexed bond with a

maturity equal to the desired horizon.29 However, information from indexed bonds

should be treated with some caution. First, there are known distortions due to tax

treatments. Second, the relatively short sample over which they have been available

implies that there is relatively little evidence on their true expected return (assuming

this to be stable). The era since the advent of indexed bonds has largely been one of

falling inflation: as a result realised returns have been poor, while yields have been

fairly high. Third, and crucially, estimates derived in this way are inconsistent with

estimates derived over longer samples in which such assets were not available.

While the above methods, if carefully applied, are likely to give a reasonable estimate

29Note however that indexed bonds of an given maturity are not safe at intermediate horizons, since they
are subject to market real interest rate shocks.
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of current consensus views on the real safe rate, it must be acknowledged that, given the

difficulties in interpreting the historical data, discussed above, such consensus views may well

exhibit some degree of instability over time. Realistically, most available long-term forecasts

of real short rates are likely to be driven by assumptions about equilibrium real interest

rates drawn from relatively short samples. Thus, for example, the common assumption in

discussions of monetary policy along “Taylor Rule” lines,30 that the mean real interest rate

should be of the order of 2 1/2%, is largely driven by experience since the 1980s.31

Finally, we discussed in Section 2.2 the argument that the “equity premium puzzle” and

the “risk-free rate puzzle” are essentially the same puzzle. The empirical evidence of the

preceding sections provides some support for this argument. That being the case, if the

equity premium were to fall in the future, it would seem more likely that the safe rate (both

hard to explain and apparently unstable in the data) should rise towards the more stable,

and more easily explicable stock return, than that the latter should fall. There has indeed

been an observable tendency for real safe rates to drift upwards from the second half of the

twentieth century onwards - visible both in the US data (see Figure 2.4) and, as Dimson,

Marsh, and Staunton (2001a) show, in a wide range of other countries.

2.5.3. Inferring Equity Premia and Expected Returns from the Dividend Discount Model

A number of authors have inferred the desired equity return and/or the equity premium from

variants of the dividend discount model (e.g., Blanchard (1993); Wadhwani (1999); Heaton

and Lucas (1999); Fama and French (2001)).

Thus, Fama & French use the simplified (i.e., constant growth rate) Gordon (1962) model

to derive the relationships:

Pt =
Dt+1

R − G
(2.13)

implying

R =
Dt+1

Pt
+ G (2.14)

30Taylor (1993). See Clarida, Gali, and Gertler (1999) for a helpful survey.
31An estimate of around this size is also consistent with estimates from Pickford et al (op cit) that the

“expectations-neutral” return on the safe asset in the USA (as in Table 2.3) over the sample 1976-1998 (a
period in which estimated expectational errors were close to zero) was just over 2%.
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where (following Fama & French’s terminology) R is the discount rate (required return on

stocks), and G is the growth rate of dividends.

A disadvantage of the specification in (2.13), noted by Heaton & Lucas (op cit), Dim-

son, Marsh, and Staunton (2001c) and many others, is that relatively small changes in the

discount rate or growth rate can imply massive shifts in the implied stock price. But as a

corollary, if the objective is to estimate R, even large shifts in the stock price should not

greatly change an estimate derived by using some version of (2.14). Fama & French show

that estimates of R derived in this way from US data are much more stable, and more con-

sistent with other data (for example, underlying rates of profitability) than those derived by

using realised returns.

It should be stressed that Fama & French primarily promote this approach as a method

of estimating the stable long-run mean return; indeed, their statistically based arguments

for the superiority of this approach are predicated on the assumption that both returns and

dividend yields are mean-reverting. As such, their approach is unobjectionable in principle,

and in practice does not produce very different answers for underlying US stock returns

or premia from those derived from long historical averages, especially if the latter are ad-

justed for one-sided errors, as discussed in Section 2.4.4 above; or for mis-valuation and/or

predictability, as discussed in Section 2.4.5. Table 2.6 summarises their long-run estimates:

Real Stock Returns Excess Returns
“Gordon Esti-
mate”

Realised “Gordon Esti-
mate”

Realised

1872-1999 6.88 8.97 3.64 5.73
1872-1949 7.79 8.10 3.79 4.10
1950-1999 5.45 10.33 3.40 8.28
Source: Fama and French (2001)

Table 2.6: Estimated Arithmetic Mean Returns

Fama & French note that, for comparability with realised returns, the Gordon estimate

should be raised by roughly 1.2% a year, due to the lower variance of dividend growth,

compared to stock price changes.32

32For reasons outlined in Section 2.4.2.
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Fama & French also seek to explain the large gap between the two competing estimates

of returns and excess returns in the post-war period. In accounting terms, the explanation

is straightforward: there was a very large fall in the dividend yield (and hence much more

rapid growth of prices than of dividends) over this period, thus the contribution of capital

appreciation to realised returns was much greater than that of dividend growth to the Gordon

estimate.

Equation (2.13) suggests two possible explanations for this shift: either R must have

fallen, or G must have risen.

At the height of the boom this latter explanation was put forward very frequently by

defenders of the then level of the market. Fama and French dismiss this argument out of

hand on empirical grounds, however, given the very weak degree of predictability of dividend

growth.33

Fama and French conclude that the only possible explanation is that, at the end of

their sample, the expected stock return and the equity premium that a rational investor

could expect must have been exceptionally low in historical terms. They calculate that,

assuming the dividend yield to remain constant from 1999, the expected real return must

have been only just under 3%, and the equity premium (compared to short-term bills) less

than a percentage point. They note, however, that even this figure may be overstated,

since, if dividend yields are expected to mean-revert (which they assume) expected growth

of dividends must be greater than expected stock price capital appreciation: thus the Gordon

estimate will overstate the true return at times of low dividend yields.

As firm believers in efficient markets, Fama & French do not take this argument further, -

perhaps unsurprisingly, since, for reasonable history-based estimates of the rate of adjustment

of dividend yields, this could very easily lead them to an implied equity premium at the end

of their sample that was significantly negative, and thus in line with the views expressed

33They might also have added a considerable weight of theory to this dismissal, since, as noted by a
number of authors (e.g., Kiley (2000); McGrattan and Prescott (2001); Campbell (2001a); Smithers and
Wright (2000)) general equilibrium considerations would suggest that any such hypothetical rise should if
anything generate a fall rather than a rise in the market. The essence of this point is that, in line with
the analysis of Section 2.2, rational forward-looking consumers, aware of higher growth rates in the future,
would attempt to bring forward their consumption to today. In general equilibrium this is impossible; hence
capital markets would only be equilibrated by a rise, not a fall in expected returns.
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by, inter alia, Campbell and Shiller (1988); Wadhwani (1999); Shiller (2000) ; Smithers &

Wright (2000); Robertson & Wright (2002) that the only data-based prediction at the end

of the 1990s was that real stock returns, and a fortiori, excess returns, had a very high

probability of being negative.34

While this in no way invalidates the methodology Fama & French apply to derive

backward-looking estimates of the long-run return and equity premium, it does illustrate

the difficulty of using the dividend discount model to derive expected returns and the eq-

uity premium in a forward-looking way. Asking what equity premium a rational forward-

looking investor would have demanded at the end of the 1990s may uncover the true equity

premium—but there is no data to substantiate this calculation. It may however simply lead

one to the conclusion (so far substantiated by events!) that, at end-1990s prices, a rational

forward-looking investor would rationally have got out of the stock market altogether.

2.6. Interpreting the 1990s Boom, and Implications for Cost of Capital

Assumptions

Academics and financial analysts alike have been divided on how to interpret the sharp rise

in market valuation ratios during the 1990s. As we write, these valuations appear to be

unwinding fairly rapidly, with both US and UK markets having fallen to levels only just

above half their peak values. But, on most valuation measures, these falls have not yet fully

unwound the impact of the earlier exceptional returns. Nor have the issues raised during the

boom yet disappeared.

One view of the market highs of the 1990s was as arising from efficient market responses

to a permanent fall in the cost of capital (eg, Heaton & Lucas (1999); Glassman and Hassett

(1999); and at least implicitly McGrattan and Prescott (2001)35). This argument appears

at least in part to have been accepted by Dimson, Marsh, and Staunton (2001c). The

alternative, more pesimistic view was that such rises (whether or not consistent with market

34They allude only very indirectly to this possibility: “the unusually high 1950–1999 returns seem to be
the result of low expected future returns (at the end of the sample). Of course, some might argue that

causation goes the other way” (Italics added).
35McGratan & Prescott simply took a snapshot of the market at its peak in 1999, and concluded that it

was fairly valued on the assumption that the equity premium was zero.
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efficiency) were ultimately likely to prove temporary, with a (possibly prolonged) period of

very weak returns, before markets returned to offering returns close to, or equal to historic

averages (eg, Cochrane, 1997; Campbell & Shiller, 1998; Shiller, 2000; Smithers & Wright,

2000; – also, implicitly, Fama and French (2001))36

The controversy can be encapsulated in two competing hypotheses. The first is that

the cost of equity capital has permanently fallen; the second that any such fall is purely

temporary.

Kiley (2000) has shown convincingly that, even if the first hypothesis is correct, the

impact would be unlikely to be in line with that implied by a näive interpretation of the

dividend discount model. Any permanent fall in the cost of capital would imply a corre-

sponding fall in the return on capital (ie in profitability) in equilibrium (but not necessarily

in transition to equilibrium), with the equilibrating factor being the level of capital itself.

An important issue for regulation in this scenario would be how best to ensure consistency in

the response of regulated industries in the face of any such fall, such that, in any final equi-

librium, the relative responses of the capital stocks of regulated and unregulated industries

would be optimal.

Any such response would however need to allow for the risk that in fact the second hy-

pothesis may be correct. A lowering of the assumed cost of capital, and hence the target

return, for regulated industries, when in fact the equilibrium cost of capital had not fallen

would bring significant associated risks that regulated industries may under-invest; may at-

tempt to become lower its beta by being, in effect, unduly risk-averse; or may even ultimately

cease operations altogether

A consistent and cautious approach to this dilemma requires an assessment of the relative

risk of failing to respond (or responding only with a lag) to a fall in the cost of capital,

compared to the risk of responding to a fall that has not actually occurred. We address

certain aspects of this issue further in Chapter 5.

36A third rationalisation of high valuations based on the assumption of efficient markets was put forward
by Hall (2000); but Hall’s arguments were not based on an assumed fall in returns, but on the assumption
of massive data measurement error: indeed, if anything, he assumed that underlying returns had risen.
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2.7. The Common Components: Key Conclusions

• Assumptions about the safe rate and the cost of equity capital must be made consis-

tently.

• Both on a priori grounds, and on the basis of evidence, estimates should be formed on

the basis of international data, not just from UK experience.

• There is considerably more uncertainty about the true historic equity premium and

(hence the risk-free rate) than there is about the true cost of equity capital. From the

perspective of the regulators, however, this ranking of uncertainty is fortunate, since

the latter is far more important, for firms with risk characteristics not too far from

those of the average firm.

• For this reason we regard the standard approach to building up the cost of equity,

from estimates of the safe rate and the equity premium, as problematic. We would

recommend, instead, that estimates should be derived from estimates of the aggregate

equity return (the cost of equity for the average firm), and the safe rate.

• While arithmetic mean returns should be used to proxy for expected returns, these

are best built up from a more data-consistent framework in which returns are log-

normally distributed, so means should be estimated with reference to mean log returns,

or (virtually identically, geometric (compound) averages).

• The longest available dataset, for the US, points to an apparently stable geometric

average stock return, over two centuries of data, of around 6–6.5%. This estimate is

fairly well-determined (a 95% confidence interval of less than a percentage point on

either side of the mean) if returns are predictable; less so (an interval up to 2 percentage

points either side of the mean) if they are not.

• International evidence suggests that the US experience was somewhat better than the

world geometric average of around 5.5%, which was also close to the UK experience.

Although we believe all such estimates should be derived in a world context, there may

nonetheless be both empirical and theoretical grounds for regarding the UK’s historic

cost of equity capital as more typical of the prospective world return.
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• The arithmetic mean return may exceed the geometric mean return by as much as 2

percentage points in annual terms (given historical estimates of stock return volatility

and an assumption of unpredictable returns). However, if cost of capital assumptions

are being made over longer horizons, this may be an over-estimate (possibly by as much

as a full percentage point), if either a) returns are predictable; or b) (more dubiously)

stock returns in future are likely to be less volatile.

• We are very sceptical of “forward-looking” (and low) estimates of the equity premium

and stock returns derived, usually at the height of the boom, from the dividend discount

model.

• Our central estimate of the cost of equity capital is around 5.5% (geometric average),

and thus 6.5% to 7.5% (arithmetic average). 95% confidence intervals are, at a conser-

vative estimate, of up to two percentage points either side of the point estimates.

• Problems in assessing historic mean values of the safe rate imply that estimates of

the future safe short-term rate (that are fortunately of distinctly lower importance for

regulators) should probably be derived in a forward-looking way from current rates.

However, in so doing, account should be taken of forecast future movements of short-

term rates, derived both from market data and published forecasts.

• A commonly used estimate of the equilibrium short-term rate (based on a sample of

data from around 1980) is of the order of 2 1/2%. Using this figure, the implied equity

risk premium is of the order of 3 percentage points (geometric) and 4-5 percentage

points (arithmetic). Given our preferred strategy of fixing on an estimate of the equity

return, any higher (or lower) desired figure for the safe rate would be precisely offset

by a lower (or higher) equity premium, thus leaving the central estimate of the cost of

equity capital unaffected.

• We do not entirely rule out the possibility that the equity premium may fall significantly

at some point in the future; but the continuing uncertainty about the premium, both

in theory and data, would suggest that, if this does occur, it is more likely to do so

through a (further) rise in the safe rate, than through a fall in the equity return.
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3. A Comparison of Asset Pricing Models

for Regulation

3.1. Introduction

Most assets have some exposure to risk. Common sense dictates that investments that are

riskier need to make higher returns to compensate for risk. Various models of risk and return

in finance highlight two central points. First, they all define risk in terms of variance in actual

returns around an expected return; thus, an investment is riskless when actual returns are

always equal to the expected return. Secondly, they all argue that risk has to be measured

from the perspective of the marginal investor in an asset, and that this marginal investor

is well diversified. It is only the risk that an investment adds to a diversified portfolio that

should be measured and compensated.

Despite these common views, differences exist between various asset pricing models as

to how to measure market risk. The Capital Asset Pricing Model (CAPM) measures the

market risk with a beta measured relative to a market portfolio. Multifactor models measure

market risk using multiple betas estimated relative to different factors. In this section, we

review four classes of asset pricing model:

1. The Capital Asset Pricing Model.

2. Nonlinear models.

3. Conditional models.

4. Multifactor models.
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The objective of the review is to identify the key theoretical and empirical differences between

the models, with a view to assessing which approach is most appropriate for the estimation

of cost of capital for regulated utilities in the U.K..

It is now well-known that the CAPM has failed to account for several observations about

average stock returns (for example, that they are related to firm size, book-to-market eq-

uity and a number of other factors). Partly because of the empirical shortcomings of the

CAPM, multifactor models (based on the arbitrage pricing theory, APT, of Ross (1976))

have gained in popularity amongst academics and practitioners. More recently still, nonlin-

ear multi-factor models have been developed. The multifactor models have, however, several

shortcomings (for example, no adequate test to guard against overfitting of the data). Recent

work has shown that conditional CAPMs, which allow the variables in the asset pricing equa-

tion to vary over time, may perform better than the standard (i.e., unconditional) CAPM,

and as well as multifactor models. These models retain the linear simplicity of the CAPM.

They are susceptible, however, to overfitting of the data, and the methodology is some way

from being fully-developed and implementable.

This chapter is structured as follows. The Capital Asset Pricing Model is discussed

in section 3.2; both the theoretical and empirical foundations for the model. Section 3.3

deals (briefly) with nonlinear asset pricing models; section 3.4 examines models with time-

varying parameters. A more extensive analysis of multifactor models is given in section 3.5,

dealing particularly with the influential models developed by Fama and French. Section 3.6

concludes, emphasizing the lessons to be drawn for practitioners.

3.2. The Capital Asset Pricing Model

The Capital Asset Pricing Model (the CAPM) was developed 30 years ago by Sharpe (1964)

and Lintner (1965). The CAPM was the first apparently successful attempt to show how

to assess the risk of the cash flow from a potential investment project and to estimate the

project’s ‘cost of capital’—the expected rate of return that investors will demand if they are

to invest in the project.
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The algebraic expression of the single-period1 CAPM is particularly simple:

�
[Re ] = Rf + β(RM − Rf )

where
�
[Re ] is the expected rate of return on equity; Rf is the safe rate of return i.e., the

return available on an asset with no risk; beta is the firm-specific beta; and RM is the

expected return on the ‘market portfolio’ i.e., the expected return from investing in risky

assets.

An investor always has a choice to invest in a ‘risk-free’ investment such as a Treasury

bill in which there is no significant risk of losing the investment and where the investment

return is fixed. This is called a safe asset. Alternatively, an investor can enter into more

risky investments. In order to be persuaded to do so, (s)he will require an additional return.

The equity risk premium can be thought of as the required excess return on a portfolio made

up of all the equities in the market over the safe rate of return. This is a measure of the risk

premium on the equity market as a whole.

The risk premium on a particular company is the product of its beta and this average

equity risk premium. The risk premium is the amount by which the required return differs

from the safe rate. A company with a beta of 1 behaves like an average equity and the

CAPM equation (3.1) implies it will have the average equity risk premium.

Beta is a measure of risk attached to a particular investment or company. If an investment

in the equity of a company is not risky, the beta will be 0. In such circumstances equation

(3.2) would show that equity investors should not expect a return from investment in that

company to be different from that available on a safe asset. A safe asset is one where there

is no uncertainty about the rate of return. (For investments over short horizons, yields on

Treasury Bills or on government bonds are reasonable proxies for the safe rate). However,

most companies’ investments are more risky than safe investments with the result that those

companies have a beta of more than zero.

Beta is an indicator of the extent to which the returns on the equity in a company fluctuate

in line with general equity returns in the stock market as a whole. Such fluctuations are

1Intertemporal models will be considered in section 3.4.
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costly to investors who dislike risk because they are difficult to avoid. If the returns on

the equity of a particular company typically follow the returns on a portfolio of all equities

then the risk of investing in that company is impossible to avoid by diversification. Beta

measures the extent to which the returns on a specific company typically follow the returns

on a diversified portfolio. Thus it is a good measure of the risk of investing in a company to

an investor who holds a diversified portfolio of assets.

Beta is usually calculated by reference to recent movements in the company’s share price;

more specifically, it is assessed by estimating their covariance (or comovement) with returns

on a diversified portfolio of stocks. If a company’s share price usually moved in line with the

market (that is by the same percentage) its beta would be 1.

The CAPM is widely used in the calculation of the required return on equity. Almost

all regulators of utilities companies estimate acceptable rates of profit by reference to the

CAPM. Use of the CAPM to estimate the required rate of return on the equity of a company

is the usual procedure in large investment banks and securities houses. For example, Merrill

Lynch, one of the world’s largest investment houses, in its recent publication “The Cost

of Capital Guide” uses the CAPM to estimate the required rate of return on the equity

of companies throughout Europe. The London Business School share price service has for

many years provided the inputs needed to use the CAPM to estimate the cost of equity.

This service is sold at commercial rates. In a recent survey by Graham and Harvey (2001),

three out of four chief finance officers said that they use the CAPM to calculate the cost of

capital.

3.2.1. The Theoretical Basis of the CAPM

The CAPM predicts that the rate of return on a risky asset is a linear combination of just

two components: the risk-free rate, the equity risk premium, with the weights given by the

asset’s beta. This simplicity is very attractive and largely explains the popularity of the

CAPM for practitioners. The simplicity has a price, however: quite strong assumptions

must be made. The exact assumptions made depend on the way in which the CAPM is

derived. There are two standard routes: through the mathematics of the efficient portfolio

frontier; and through a model of consumption. The latter will be reviewed in sections 3.3
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and 3.4.

Two types of assumption underlie the portfolio frontier derivation of the CAPM. The

first type can be shared by the CAPM and other asset pricing models.

Assumption 1: Risk Aversion and Competitive Equilibrium

• Investors are risk averse.

• Markets for risky assets are in perfectly competitive equilibrium i.e.,

– there are no transactions costs, taxes, constraints on short-selling, or other market

frictions;

– assets are infinitely divisible;

– there is perfect competition (no individual investor can affect asset returns);

– unlimited borrowing and lending is permitted

– investors have identical beliefs about asset returns.

The second type of assumption is particular to the static CAPM, and gives the CAPM

its special features as expressed in equation (3.1).

Assumption 2: Fund Separation

The distribution of asset returns belongs to the class of separating distributions identified by

Ross (1978); this class includes the multivariate normal distribution.

The portfolio frontier assumption ensures two-fund separation—given any portfolio of assets,

there exists a portfolio of two mutual funds that investors prefer at least as much as the

original portfolio. This gives immediately the characteristic form of the CAPM equation as

a linear combination of returns on two portfolios.2

2To be precise: (i) two-fund separation means that all investors hold a linear combination of two mutual
funds; (ii) by the definition of two-fund separation, the mutual funds are frontier portfolios (i.e., belong to
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What happens if these assumptions do not hold? Clearly, the assumption of risk aversion

for investors is crucial: without this, the trade-off between risk and return expressed by

the CAPM does not hold. Certain deviations from a perfectly competitive market can be

tolerated; for example, a version of the CAPM continues to hold even when borrowing is

constrained—see Black (1972). If two-fund separation does not hold, then the resulting asset

pricing model will be neither linear nor have a single factor.

3.2.2. The Empirical Support for the CAPM

If expected returns and betas were known and the ‘market portfolio’ were clearly identifi-

able, then an empirical test of the CAPM would be straightforward: simply plot the return

and beta data against each other and test for a linear relationship. Unfortunately, neither

expected returns, betas nor the market portfolio are known; in order to perform empirical

tests, each must be estimated. This raises three problems:

• The CAPM implies a relationship concerning ex ante risk premia and betas, which are

not directly observable.

• The CAPM as expressed in equation (3.1) is a single-period (although we will consider

intertemporal versions in section 3.4. The data used to test the model are typically time

series, as well as cross-sectional. Hence it is typically necessary to add an assumption

concerning the time-series behaviour of returns. The simplest is to suppose that the

CAPM holds period by period i.e., that returns are independently and identically

distributed over time. It is unlikely, however, that risk premia and betas on individual

assets are constant over time (a problem reviewed further in section 3.4).

• Many assets are not marketable; but, in principle, the CAPM requires that returns on

the market portfolio, which includes all possible assets, be known.

the set of portfolios that achieve a given level of return with minimum variance); (iii) since the set of frontier
portfolios is convex, all investors therefore hold a frontier portfolio; (iv) in equilibrium, the market portfolio
is a convex combination of all investors’ portfolios, and therefore is a frontier portfolio; (v) the mathematics
of the portfolio frontier then places a linear restriction on expected asset returns in equilibrium that is shown
in equation (3.1).
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The standard solutions to each of these problems is to:

• Assume rational expectations, so that there is no systematic difference between ex ante

expectations and ex post realizations; hence the former can be estimated by the former.

• Distinguish between conditional and unconditional versions of the CAPM. Even when

risk premia and betas conditional on information sets available to investors over time

are not constant, they can be constant conditional on a coarser information set.

• Proxy the market portfolio using a a major portfolio (such as a time-series of monthly

rates of return on common stocks listed in the New York Stock Exchange (NYSE)),

assuming that (i) the disturbance terms from regressing the asset returns on the return

on the proxy market portfolio are uncorrelated with the true market portfolio; and that

(ii) the proxy portfolio has unit beta. The sensitivity of tests to the proxy used can be

examined.

A general empirical version of the CAPM is

Zjt = αjt + βjtZmt + εjt

for j = 1, . . . , N and t = 0, 1, . . . , T . Zjt is the realized excess return (i.e., realized return

minus the risk-free rate of return) for asset j at time t. Zmt is the time-t market portfolio

excess return. βjt is the beta of asset j at time t; αjt is the asset return intercept. εjt is the

disturbance for asset j at time t; it is assumed to be uncorrelated with the excess market

return. There are three ways that this model has been brought to the data:

1. A cross-section regression model of average (e.g., monthly) excess rates of return against

estimated betas. That is,

Z̄j = α + bβj + εj

where Z̄j is the average excess rate of return of asset j. In this regression, βj is

treated as a fixed independent variable (estimated in some other procedure). If the

CAPM is the correct model, then the regression coefficient b is the excess return on
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the market portfolio. For example, Blume and Friend (1973) use this version to test

the hypotheses that α equals zero and b > 0; this can be taken as a weak test of the

CAPM’s predictions. They find that both α and b were strictly positive; this finding

is statistically significant.

2. A series of monthly cross-sectional regressions involving the realized excess rates of

return:

Zjt = αt + btβj + εjt

for all j = 1, . . . , N and t = 0, 1, . . .. Here again βj is treated as a fixed independent

variable; if the CAPM is the correct model, then the regression coefficient bt is the

excess return on the market portfolio at time t. For example, Fama and Macbeth

(1973) test the weak CAPM predictions that

α̂ ≡
T

∑

t=0

αt

T
= 0, b̂ ≡

T
∑

t=0

bt

T
> 0

when return distributions are stationary over time. Similar to the findings of Blume

and Friend (1973), Fama and Macbeth find that both â and b̂ were significantly strictly

positive.

3. A series of time-series regressions for each asset/portfolio in the sample:

Zjt = αj + βjZmt + εt

for all j = 1, 2, . . . , N and t = 0, 1, . . . , T . In this model, βj is a parameter that is to

be estimated, while Zmt, the excess return on the market portfolio at time t, is the

independent variable. Note that the αj and βj are assumed to be constant over time.

For example, Black, Jensen, and Scholes (1972) test the weak prediction that

N
∑

j=1

αj

N(1 − βj)
= 0.

If the Sharpe/Lintner CAPM is the correct model, this condition should not be rejected;

if the Black (1972) version of the CAPM without a risk-free asset holds, then the
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condition should be rejected. In Black, Jensen, and Scholes’s test, the condition is

rejected.

All three early tests of the traditional CAPM provided, therefore, weak support for

the Black (1972) version of the CAPM without a risk-free asset. Two problems arose,

however. The first related to the considerable econometric difficulties (as distinct from the

conceptual difficulties discussed above) in testing the model. These called for techniques more

sophisticated than standard ordinary least squares (OLS) to be used.3 The second problem

appeared in the late 1970s with a series of papers discovering ‘anomalies’—firm characteristics

that provide explanatory power for the cross section of asset mean returns beyond the beta of

the CAPM. Many such anomalies have now been ‘discovered’; the following is an incomplete

list:

• Small Firm Effect: Smaller firms have higher expected returns than predicted by the

CAPM. See Banz (1981), Keim (1983) and Reinganum (1983).

• Value Effect: Firms with low ratios of book value to market value have higher expected

returns. See Chan and Chen (1991).

• Neglected Firm Effect: Firms with low institutional holdings have higher returns. See

Arbel and Strebel (1983).

• Overreaction: Stocks which are down in one time period tend to rebound in the next

(and vice versa). See De Bondt and Thaler (1985).

• January Effect: The return in January is consistently larger (by up to 8%) than returns

for all other months. See Keim (1983) and Roll (1983).

• Monday Effect: The return from Friday close to Monday close is negative. See French

(1980) and Gibbons and Hess (1981).

3Returns on financial assets may exhibit conditional heteroskedasticity, serial correlation and non-normal
distributions. Such features call for the use of Hansen (1982)’s generalized method moments (GMM). In
addition, maximum likelihood methods should be employed to test whether or not the market proxy portfolio
is on the portfolio frontier, due to the nonlinear constraint imposed by the CAPM on the return-generating
process.

58



The ever-growing anomaly literature presents a considerable challenge to the CAPM.

One response has been to go on the offensive on three fronts. The first is to argue that

there is little theoretical motivation for the inclusion of particular firm characteristics in an

asset pricing model; see for example Brennan and Xia (2001). The second is to point out

weaknesses in the methodology of the anomalies literature, such as neglect of the problems of

survivor bias and data mining; see Kothari, Shanken, and Sloan (1995), and Campbell, Lo,

and MacKinlay (1997). The third attack is the last line of defence for the CAPM: anomalies

simply show that tests use poor proxies for the ‘true’ market portfolio. This harks back to

the famous Roll (1977) critique of the CAPM—tests of the CAPM really only reject the

mean-variance efficiency of the proxy; the model might not be rejected if the return on the

true market portfolio were used.

A second response to the empirical questioning of the CAPM has been to move away

from the linear, stationary and single factor features of the model. The alternatives are

reviewed in turn in the next three sections.

3.3. Nonlinear Models

In section 3.2, we concentrated on a derivation of the CAPM that relied on fund separation

and the properties of the efficient portfolio frontier. An alternative approach to the CAPM

starts from a model of consumption. A consumption model analyses explicitly an individual’s

problem of maximizing the present discounted value of utility by choosing intertemporal

consumption and investment in risky assets. The outcome of the analysis is an equation

relating the ratio of marginal utilities across two periods to the asset price. This equation

(known as the Euler equation) is, basically, a ‘no arbitrage’ condition—it requires that the

individual cannot increase total utility by shifting wealth across the two periods. The ratio

of marginal utilities measures how much total utility changes when a unit of consumption is

shifted between periods; the asset price and expected return shows how much extra income

(and hence consumption) can be generated by increasing investment by one unit. The

condition is written

1 =
�

t [mt+1(1 + Rt+1)] (3.1)
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where Rt+1 is the random return of the asset at time t + 1. mt+1 is known as the stochastic

discount factor, or SDF; it is the discounted ratio of marginal utilities of consumption (in

consumption-based models of asset pricing). Expectations at time t about time t+1 outcomes

are denoted by the operator
�

t . See Cochrane (2001).

For empirical testing, it is more convenient to write equation (3.1) as a set of moment

conditions:

�
[m(1 + R) − 1] = 0 (3.2)

where R is the vector of asset returns and 1 is a vector of ones. Three cases can be distin-

guished:

• There is a single factor and the SDF is a linear function of that factor i.e., m = βf .

When the single factor is the market portfolio, this case generates the CAPM.

• There are several factors and the SDF is a linear function of the factors: m =
∑

k βkfk.

This case generates a linear multifactor model, discussed further in section 3.5.

• There are any number of factors and the SDF is a nonlinear function of the factors.

This case generates a nonlinear factor model.

This classification emphasizes the relationship between linear and nonlinear asset pricing

models and allows an empirical test to distinguish between the two possibilities. To test

for linearity, the SDF can be written as m =
∑

k βkfk; the parameters β = (β1, . . . , βK)

can then be estimated by GMM using the moment conditions in equation (3.2). See Ferson

(1995), Cochrane (1996) and Campbell, Lo, and MacKinlay (1997). This is the so-called SDF

method of testing a linear asset pricing model; it can be contrasted to the more familiar beta

methods that are discussed in section 3.2.4

4There is a methodological issue concerning the efficiency of the SDF method for non-linear models
relative to the efficiency of the classical beta method for linear models. If the SDF method is relatively
inefficient, then (as far as estimation efficiency is concerned) it is better to use the beta method and a linear
pricing model. Kan and Zhou (1999) claim that the beta method is more efficient. Jagannathan and Wang
(2001) dispute this conclusion, arguing that Kan and Zhou make inappropriate comparisons. They find that
the SDF is asymptotically as efficient and has the same power as the beta method. The debate continues in
Kan and Zhou (2001). See Campbell, Lo, and MacKinlay (1997), chapter 12 for a review of other approaches
to estimating nonlinear models.
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In this section, we put to one side the question of which factors should be used; this is

dealt with in section 3.5. Here, we focus on the theoretical and empirical reasons for using

a linear or nonlinear asset pricing model. It may seem intuitive that a nonlinear model will

provide a better approach to asset pricing. There are three observations that qualify this

intuition.

Any nonlinear model can be approximated by a linear model, in a variety of ways. The

simplest way would be to take a linear approximation to a nonlinear SDF. Suppose that the

‘true’ SDF is a nonlinear function of a single factor f : m = g(f) where g(·) is (for the sake of

argument) a continuously differentiable nonlinear function. Consider the Taylor expansion

for mt+1 = g(ft+1) around the point ft:

mt+1 = g(ft) + (ft+1 − ft)g
′(ft) +

(

(ft+1 − ft)
2

2

)

g′′(ft) + . . .

If the higher-order terms can be neglected, then this expansion becomes the approximation

mt+1 ≈ αt + βtft+1,

where αt = g(ft) − ftg
′(ft),

βt = g′(ft).

This approximation will be a good one only if the factor does not change too much i.e.,

|ft+1 − ft| is small, and if the higher-order derivatives of g(·) are not too large, evaluated

at ft. As Cochrane (2001) points out, the shorter the time interval, the less will be the

variation in the factor. And even if this approximation is not a good one, others, derived by

taking different expansion points (e.g., the conditional mean of the factor
�
[ft+1 ]), may prove

satisfactory. In many cases, then, even if the ‘true’ model is nonlinear, a linear approximation

will prove satisfactory.

In some cases (for example, where there is substantial variability in factors and/or the

time interval between data observations is large), however, a linear approximation may not

suffice. This leaves the challenge of estimating a nonlinear model. There has been a limited

amount of work in this area.5 The earliest work appears to be Kraus and Litzenberger (1976),

5The following is an incomplete list of work. One difficulty in reviewing nonlinear models is that the
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(1983), which derive a three-moment asset pricing model by assuming that investors have a

preference for positive return skewness in their portfolios. The SDF of this model is quadratic

in the market return. More recent work includes Friend and Westerfield (1980), Scott and

Horvath (1980), Sears and Wei (1985), Lim (1989), Leland (1999), Bansal and Viswanathan

(1993), Bansal, Hsieh, and Viswanathan (1993), and Harvey and Siddique (2000). These

papers typically find that nonlinear variables help to explain the cross-sectional variation of

expected returns across assets, and that the effect is economically important. For example,

Harvey and Siddique find a statistically significant risk premium on conditional skewness

of 3.6% per year. Bansal and Viswanathan (1993) and Bansal, Hsieh, and Viswanathan

(1993) analyse a class of nonlinear Arbitrage Pricing Theory (APT) models.6 They find that

nonlinearity of the SDF in the market return is significant in explaining stock returns.

Recent work has questioned some of these findings. Kan and Wang (2000) argue that

a conditional CAPM (which allows for non-constant parameter estimates—see section 3.4)

accounts for a panel of expected returns on equities better than a nonlinear APT model.

(To be precise: using GMM estimation, they find that the Hansen and Jagannathan (1997)

distance measure of pricing errors i.e., the maximum pricing error of the conditional CAPM

is lower in all cases studied than that of a nonlinear APT model.) The issue that they

highlight is that a carefully specified conditional CAPM—i.e., one in which appropriate time

variability is allowed in the parameters of the linear model—will usually perform better than

a nonlinear model. Those papers that conclude otherwise do so because they do not specify

the conditional linear model correctly.

There is, in addition, a methodological problem in the estimation of nonlinear models:

that of overfitting. An overfitted model fits the sample data “too well” i.e., it fits both

the underlying deterministic components and the random errors. It will, therefore, perform

very well within-sample (by definition); it is likely to perform far less well out-of-sample.

Nonlinear estimation is particularly prone to the temptation of overfitting, since it is not

clear how many degrees of freedom are given to the researcher. This problem is compounded

by the fact that there is no one method that can test for the problem of overfitting.

set of nonlinear models is very large, being the complement of the set of linear models. We focus on asset
pricing papers, and so do not include papers on nonlinearity in general macroeconomic data, for example.

6See section 3.5 for further discussion of the APT.
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Finally, recent work has shown that in many cases, non-linear models are in fact ‘higher

moment’ models that are linear in the relevant parameters. Satcehll and Hwang (1999) show

that the CAPM can be extended to take account explicitly of measures of skewness and

kurtosis. The resulting linear model can be estimated using the distribution-free GMM.

This section has provided a brief review of nonlinear asset pricing models. In doing so, it

has pointed to the close connection, for empirical testing, between nonlinear and conditional

models.

3.4. Conditional Models

The standard i.e., unconditional version of the CAPM asserts that the parameters in the

relationship between an asset’s expected excess return and the expected excess return on the

market portfolio are constant; see equation (3.2). This is a product of the static framework

in which the CAPM was originally derived. The development over the last two decades of

consumption based models have highlighted the intertemporal factors that influence asset

pricing. Recent research has documented mounting evidence of time-varying betas and time-

varying risk premia; see, for example, Fama and French (1988) and Lettau and Ludvigson

(2001a). Consequently, it has become common to allow for time-varying parameters in the

CAPM:

�
t [Zj,t+1] = βt

�
t [Zm,t+1]

where Zj,t+1 is the time t + 1 excess return on asset j, Zm,t+1 is the time t + 1 excess return

on the market portfolio, βt is a time-varying factor loading, and
�

t denotes expectations

conditional on information held at time t. See Cochrane (2001), chapter 8 for further deriva-

tions. Numerous papers have adopted this approach: see Shanken (1990), Cochrane (1996),

Jagannathan and Wang (1996), Ferson and Harvey (1999), Campbell and Cochrane (2000),

Ferson and Siegel (2001), and Lettau and Ludvigson (2001b), amongst many others.

The general finding is that conditional models that allow for time-varying parameters in

the asset pricing equation can perform substantially better than unconditional models. As

Lettau and Ludvigson (2001b) comment, conditioning improves the fit of (in their case) the
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CCAPM because

some stocks are more highly correlated with consumption growth in bad times,

when risk or risk aversion is high, than they are in good times, when risk or risk

aversion is low. This conditionality on risk premia is missed by unconditional

models because they assume that those premia are constant over time. [p. 1241]

Lettau and Ludvigson find that conditioning a CCAPM on the log consumption-wealth

ratio gives a model that performs (i) better than an unconditional specification; (ii) about

as well as the Fama and French three-factor model in explaining the cross section of average

stock returns. Moreover, as Cochrane (2001) notes, conditioning (once the conditioning

instruments are chosen) is simple to implement—it is just a matter of scaling unconditional

factors by the chosen instruments and then proceeding in a standard way.

This route certainly provides a lifeline to the CCAPM, troubled as it has been by its

inability to explain observed values of either the risk-free rate or the equity premium. In a

sense, it is not surprising that conditioning on extra information improves the performance

of the model. With a cunning choice of conditioning variables, the sample data can be

matched very well to a (conditionally) linear CAPM. This is just the problem of overfitting

encountered in section 3.3. The focus then shifts to the economic motivation for the variable

brought into the model for the conditioning. (This is the explanation of the enduring appeal

of the CAPM and the CCAPM, even in the face of empirical challenges to these models—

both have a sound economic story to them.7) There is no accepted method to assess the

extent to which conditioning factors have been chosen to fit data. Nor is there a consensus

about what constitutes a compelling economic story for choosing a particular conditioning

factor.

The difficulty is particularly acute in conditional CAP models. Conditioning is intended

to reflect the information that investors use when making their consumption and investment

decisions. This information is, of course, unobservable to the researcher. Hence there is no

test available to assess whether the correct conditioning instruments have been used. When

7Cochrane (2001) notes that the CAPM is still taught despite the challenges. He notes that “[i]t seems
that ‘it takes a model to beat a model’” (p. 302). Much the same sentiment is expressed by William Sharpe
in a 1998 interview that can be found at http://www.stanford.edu/∼wfsharpe/art/djam/djam.htm.
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the standard CAPM fails to explain stock returns, the defence implied by the Roll critique is

that the market portfolio has not been specified correctly. When a conditional CAPM fails,

a defence is that incorrect conditioning instruments have been used. There is no way to test

whether this defence is correct or not.

These criticisms are expressed in Brennan and Xia (2002), who argue that the predictive

power of Lettau and Ludvigson’s conditioning variable (which they call ‘cay’) comes mainly

from a ‘look-ahead’ bias that is related to overfitting. Indeed, they show that the out-of

sample predictive power of cay is negligible except in the first half of the sample period; and

that a variable based on calendar time (which Brennan and Xia call ‘tay’) is able to forecast

stock returns as well as cay. See Lettau and Ludvigson (2002) for a response.

In summary: conditional CAPM i.e., models in which the parameters of the CAPM

are time-varying offer some promise for improving the performance of the CAPM. But, like

nonlinear models, the conditional models are susceptible to the charge of overfitting. Despite

the large amount of work in the area, the methodology is some way from being agreed and

testable.

3.5. MultiFactor Models

The anomalies described in section 3.2 have lead many to question the validity of the CAPM.

An obvious response to the anomalies is to include in the asset pricing model additional

factors related to the anomalies. For example, if smaller firms have higher expected returns

than predicted by the CAPM, then including a variable related to firm size should help to

improve the explanatory power of the model. (The obvious dangers in this approach are

discussed below.) This somewhat ad hoc approach is given theoretical grounding by the

Arbitrage Pricing Theory, developed by Ross (1976), which approaches asset pricing from

a different direction to the standard CAPM argument. In this section, we first review the

APT to assess the theoretical basis for multifactor asset pricing models. We then discuss

the empirical evidence for multifactor models, concentrating on the seminal papers by Fama

and French.
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3.5.1. The Arbitrage Pricing Theory

The CAPM starts from an explicit model of investor behaviour (mean-variance preferences,

first analysed by Markovitz (1952)). In contrast, the APT of Ross (1976) starts with a

more primitive assumption: that there should be no arbitrage opportunity in an economy.

An arbitrage opportunity exists (roughly speaking) if there is no costless portfolio (in an

economy with a large number of assets) the expected return of which is bounded below away

from zero and the variance of which is negligible. A less technical, but more intuitive phrase

is that there should be no free lunch. The economic assumption is that, in an economy

in which agents are doing the best that they can to maximize their utility, any free lunch

would quickly be eaten. In addition, the APT assumes that the payoff of a risky asset j is

generated by K factors, (f1, f2, . . . , fK) in a linear way: that is,

Xj = αj +

K
∑

k=1

βjkXk + ηj . (3.3)

In this equation, Xj is the payoff from asset j, Rk is the payoff from factor k, αj and βjk

are asset- and factor-specific constants, and ηj is a random variable (idiosyncratic risk) with

zero mean and covariance with the factor returns.

The APT uses the two assumptions—no arbitrage opportunities and the linear factor

equation—to derive a prediction about expected rates of return in risky assets. Note that

equation (3.3) refers to realized returns; it is a statistical characterization and has no economic

content. If there were no idiosyncratic risk, so that ηj = 0 for all assets j, then it would

state that

Xj = αj +
K

∑

k=1

βjkXk.

When there are no arbitrage opportunities, this equation implies that the price of asset j can

depend only on the prices of the K factors. In turn, this implies that the expected return

on asset j is a linear function of the expected returns on the factors.

In practice of course, there is idiosyncratic risk i.e., ηj 6= 0. Nevertheless, the linear

relationship between an asset’s expected return and the expected returns on the factors,
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which the linear factor equation (3.3) and no arbitrage imply holds exactly when ηj = 0,

may hold approximately. The smaller is the idiosyncratic risk, the better the approximation.

In fact, the APT shows that, when there is sufficiently large number of risky assets,

∣

∣

∣

∣

∣

(
�
[Rj ] − Rf) −

K
∑

k=1

βjk (
�
[Rk ] − Rf)

∣

∣

∣

∣

∣

≤ ε

where Rf is the return on the risk-free asset and ε > 0 is some small number. In words: a

linear relationship between the expected rates of returns on risky assets and the factors holds

approximately for most of the assets when the economy is large. See Huang and Litzenberger

(1998) for a more detailed derivation and explanation of the APT.

3.5.2. Consumption and Intertemporal CAPMs

There are two other types of multifactor model, both based on the CAPM: the consumption

CAPM (or CCAPM, also discussed in sections 3.3 and 3.4), first developed by Breeden (1979)

and the intertemporal CAPM (or ICAPM), first developed by Merton (1973).

In the APT, factors are any assets or portfolios that account for systematic correlation

among asset returns; the factors arise from an arbitrage-based argument. In the ICAPM, it is

assumed that there exists a limited number of ‘state variables’ (e.g., technology, employment

income, the weather) which are correlated with assets’ rates of return. In the CCAPM,

the most important factor is aggregate consumption (or anything correlated with it). The

ICAPM and CCAPM are closely related, both being based on equilibrium conditions and

the utility maximization problems of investors; the CCAPM can be viewed as a special case

of the ICAPM.

Despite the different origins of the APT and ICAP/CCAP models, they can all be col-

lapsed into single beta (i.e., CAPM-like) representations when there are no arbitrage oppor-

tunities. No arbitrage implies the existence of a stochastic discount factor mt (see section

3.3), so that

�
t [mt+1(1 + Rt+1)] = 1 (3.4)
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Model Risk Factors Portfolio p
APT Common factors that account for Efficient combination of

systematic correlation among asset returns factor replicating portfolios
ICAPM Growth rates of state variables Efficient combination of market

including aggregate wealth and state variable hedge portfolios
CCAPM Aggregate intertemporal Portfolio maximally correlated

marginal utility function with marginal utility function

Table 3.1: Summary of Multifactor Models

where Rt is the return on the asset at time t. Further, the SDF can be written as a linear

function

mt = γt + δtRΦ,t+1

where RΦ,t+1 is the time t + 1 return on some portfolio Φ that is formed to replicate the

characteristics of the SDF. γt and δt are (time-varying) parameters in the linear relation-

ship. See Harrison and Kreps (1979) and Hansen and Jagannathan (1991). Straightforward

manipulation of these two equations gives the linear equation:

�
t [Rt+1] = Rf + βΦ,t+1 (

�
t [RΦ,t+1] − Rf )

where βPhi,t+1, like the CAPM beta, depends on the covariance between the returns of the

asset and the portfolio Φ; Rf is the risk-free return.

The asset pricing models can, therefore, all be represented in the same way—as single

beta models. The models differ in their specification of (i) the SDF, and hence the sources

of uncertainty that drive the SDF; and (ii) the portfolio Φ. Table 3.1, taken from Lehmann

(1992), summarizes the differences.
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3.5.3. Summary of Empirical Tests of Multifactor Models

In this section, we provide a brief review of multifactor models, before concentrating on the

most widely-cited and influential work by Fama and French (1992) in the next section. In

the light of the previous discussion, we do not distinguish between APT, CCAP and ICAP

models.8

The first empirical test of the APT, Gehr (1975), was in fact published before the original

APT article of Ross (1976). The first comprehensive test is Roll and Ross (1980), who find

evidence for three and perhaps four factors for generating process of returns. Chen (1983)

estimates an APT model on daily return data, finding that the APT model performs well

relative to the CAPM. He also finds that variables such as own variance and firm size do

not contribute additional explanatory power to that of the factor loadings. Chen, Roll, and

Ross (1986) is one of the first papers to employ macroeconomic variables as APT factors,

rather than choosing factors by some statistical analysis of security returns. They find

that risk from the spread between long and short interest rates, expected and unexpected

inflation, industrial production, and the spread between high and low grade bonds are all

significantly priced. (They also have results on macroeconomic factors that are not priced

separately.) Shanken (1990), Ferson and Schadt (1996), Jagannathan and Wang (1996),

and Cochrane (1996) all extend the CAPM by scaling the market factor with variables such

as the dividend-price ratio or returns on physical investment. These models are therefore

unconditional multifactor models. All of the papers report reduced pricing errors, relative

to the standard CAPM, by introducing additional factors.

Several empirical difficulties have been encountered in the implementation of the multi-

factor models. The APT is silent about what the factors are: it simply assumes that they

exist and that a linear combination of their realized returns determines the realized return

of risky assets. There has been a lengthy debate about (i) how to determine the number

of factors (see Connor and Korajczyk (1993)); (ii) whether the ‘true’ number of factors is

likely to be large (see Dhrymes, Friend, and Gultekin (1984)); and (iii) whether it matters

(see Lehmann and Modest (1987)). The APT gives an approximate relationship; for any

8For a very comprehensive reading list on multifactor models, see
http://www.kellogg.nwu.edu/faculty/korajczy/htm/aptlist.htm.
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given asset, the deviation of its expected rate of return from the APT relation might be

very large. Most APT applications assume that the pricing errors are negligible and use the

pricing equation as if it were a strict equality. The empirical weakness in the ICAPM is that

the set of variables that may serve as proxies for changes in investment opportunities is too

broad. Essentially, any variable that forecasts future returns would be priced in the ICAPM.

On the other hand, the CCAPM provides a factor model with aggregate consumption as the

only possible factor. An mentioned elsewhere in this report, analyses using only aggregate

consumption as a factor have proved disappointing empirically.

3.5.4. The Fama and French MultiFactor Model

Fama and French (hereafter FF) (1992), (1996) attempt to resolve two of the key anomalies

that have plagued the empirical CAPM, by including two additional factors into the asset

pricing equation. In doing so, FF provide evidence that this also eliminates any marginal

impact of a wide range of further anomalies (such as the dependence of a firm’s equity returns

on its past sales growth).

The empirical basis for the FF model is derived from time series regression equations, for

the excess return on asset or portfolio i of the form (as in equation (2) of FF (1992)):

Ri − Rf = αi + βi(Rm − Rf) + siSMB + hiHML + εi

where SMB is the difference between the returns on two portfolios, one of small, and one of

large stocks; and HML is the difference between the returns on two portfolios, one of high,

one of low book-to-market ratios.

FF show that such equations have very high explanatory power (with a typical R-squared

of around 0.95) for a range of portfolios, sorted according to a range of different prior

characteristics. Earlier work (FF) showed explanatory power from the same factors for the

cross-section of individual stock returns. The collective and individual significance of the

factor loading parameters βi, si and hi is thus clear-cut. In most specifications, the restriction

that the intercept ai is zero cannot be rejected at standard levels of statistical significance.

On the basis of these time series regressions, FF infer a pricing equation (consistent with
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the APT) where the risk premium on asset i is a linear combination of the risk premia on

the three factors:

�
[Ri ] − Rf = βi(

�
[Rm ] − Rf ) + si

�
[SMB] + hi

�
[HML].

On the face of it, this pricing equation potentially offers economically significant differences

from the expected returns implied by a simple CAPM. The key differences are:

• The historic risk premia associated with the two non-CAPM factors are large. In the

FF sample (1964–1993) the mean annual excess returns were 4.9% on SMB, and 6.3%

on HML. The latter is higher than the excess return of the market over safe assets

within the same sample, of 5.9%.

• Estimated values of the βi are generally very close to unity. This has two implications.

First, in the absence of the other factors, the pricing equation would have little ex-

planatory power for the cross-section of expected returns (consistent with a range of

evidence, from FF and others, that the CAPM beta does not explain mean returns).

Secondly, the risk-free rate essentially disappears from the equation.

As a relevant example, Giles and Butterworth (2002), on behalf of T-Mobile, find fairly

similar results to FF in an implementation on UK data, albeit with a very limited role for firm

size (on which more below). They find a similar mean excess return on the UK equivalent

of HML to that of FF; and, on the basis of estimated impact factors for Vofafone, calculate

that this implies an additional impact on the cost of capital for T-Mobile of up to two

percentage points, over and above that from the standard CAPM beta.9

It is worth noting, however, before proceeding to a more detailed critique of FF, that

even at face value, the additional factors in the FF pricing equation do not necessarily have a

major impact on estimated expected returns for most regulated industries. The explanation

for this is straightforward: while the average firm will have a βi of unity (and, indeed, so

will most non-average firms, in FF’s results), the values for the average firm of the two

9In their results, the UK HML is close to orthogonal to the market excess return, so the simple addition
of the FF-type effect is defensible; on US data, the market return and HML are negatively correlated, so
the FF beta does not correspond to the simple CAPM beta.

71



other loading factors si and hi will be zero, since, e.g., high book-to-market firms will have

a positive value of hi, but low book-to-market firms will have a negative value. Since such

firms are only identified in relative terms, the average effect must be zero. The impact of the

two additional factors will be large only for firms that are at extremes of the cross-section.

We note below, in fact, that the role of the additional factors may be more significant in

an indirect way, by changing estimates of the βi.

There are also quite important reasons to be sceptical of the basis for the FF pricing

equation. While the estimated loading factors are, as noted, highly significant, much less

attention has been paid to the statistical significance of the risk premia themselves. How

confident we can be that, on average, the risks associated with these factors have a positive

price? A range of authors (e.g., Campbell (2001b) and MacKinlay (1995)) have criticised

FF for ‘data-snooping’—inferring the existence of such factors from the features of a single,

relatively short sample, that might not be representative of the true underlying model.

Just as in the case of the equity risk premium, the assumption that mean returns on

the two factor portfolios are equal to the mean risk premia requires the assumption that

expectational errors have cancelled out over the sample. It is noteworthy that in other work

(Fama and French (2001)), FF give substantial credence to the possibility that, in the case

of the equity risk premium itself, expectational errors have not cancelled out in the post-war

period, thus biasing upwards the estimate based on realized returns.

In the case of the two additional FF factors, the basis for assuming positive risk premia

appears distinctly more fragile, for a number of reasons:

• FF themselves acknowledge that the theoretical basis for their factors is, at best,

patchy. While they can, to a limited extent, be rationalized ex post, there is no clear

theory that posits a positive premium on the factor portfolios. Indeed, if anything,

there is one simple theory that posits a premium of precisely zero: namely, that, in

a CAPM world, positive excess returns on the factor portfolios should represent an

unexploited arbitrage opportunity.

• Even within their own sample, the empirical evidence of significantly positive premia is

not very strong. Table 3.2 shows that, on the basis of standard t-tests (as reported in
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Rm − Rf SMB HML
1964–1993 5.94 (1.96) 4.92 (1.72) 6.33 (2.60)
1993–2002 6.61 (0.87) 0.26 (0.05) -0.43 (-0.06)
1964-2002 6.09 (2.16) 3.84 (1.56) 4.77 (1.93)

Table 3.2: Sample Arithmetic Means (t-statistics in parentheses)

FF (1996)), the sample mean of the excess return SMB is of only marginal significance;

the statistical significance of the mean excess return on HML is called into question

by the possibility of data mining.

• We have extended the two original series in FF (1996) out of sample, using reasonable

proxies.10 Table 3.2 shows that in the sample since 1993, these proxies have means

that are insignificantly different from zero. In the full sample, this implies that the

t-statistics for the null hypothesis of a zero mean are distinctly more marginal, even

at classical significance levels.11

• In contrast, for comparison, table 3.2 shows that adding an additional 8 years of data

somewhat increases the precision of the estimate of the equity risk premium, as it

should do if the underlying true mean value is constant.

Figure 3.1 illustrates the fragility of the estimated premia by cumulating excess returns

on the two factor portfolios. It shows, as noted by others (e.g., Dimson, Marsh, and Staunton

(2001b) and Siegel (1998)), that the reliability of the small firm effect was already looking

fairly suspect even by the time of FF’s estimation work. The book-market effect survived

for longer, but went into full-scale reverse during most of the 1990s.

It would be almost certainly be premature to conclude from this that available evidence

for the positive risk premia is definitely spurious. FF note, in countering arguments of

10HML is proxied by the return on the Barra value index, less that on the Barra growth index (these
partition the S&P 500, largely on the basis of book-to-market ratios). In the common sample (1974–1993)
the proxy has a correlation of 0.87 with HML. It is rescaled in extrapolation. SMB is proxied by the return
on the S&P SmallCap 600, less that on the S&P 500. Unfortunately no common sample is available. Data
for 2002 are for August.

11Note also that the estimated mean geometric returns are even closer to zero, and even less significant—an
element in the positive arithmetic mean is simply due to the variance of excess returns on the portfolios.
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Figure 3.1: Cumulative Returns on Fama and French Factor Portfolios
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data mining, that both risk premia appear to have been significant in earlier periods; and

Dimson, Marsh, and Staunton show that they have also been present in the UK and other

countries. But a conservative position is that the case for positive premia on these factors is

‘not proven’.

This conclusion must be treated with caution, however, when dealing with FF-style

pricing equations. On the face of it, if we assume that the expected premia on the two

additional factors are zero (an assumption that does not appear inconsistent with history,

nor with simple theory), then, despite the predictive power of these factors period-by-period,

in expectation we are left with simply the first term in the FF pricing equation—which looks

just like the CAPM.

However, deriving the CAPM in this indirect way will not have the same implications

for the estimated expected cost of capital, since, as noted above, the estimated values of

the βi in the FF equations are almost all very close to unity. This is indeed an inescapable

conclusion to draw from the research of FF and others, that finds that the CAPM beta

has very weak explanatory power for the cross-section of returns. FF’s results imply that,

in contrast, standard estimated values of the CAPM β that differ significantly from unity

may be proxying the impact of the omitted factors. Yet if these factors themselves have

associated risk premia of zero, allowing the CAPM beta to vary significantly from unity may

be throwing too much or too little weight on the role of market risk, for any given stock,

since, on the basis of FF’s work, the underlying model used to estimate beta is mis-specified.

At a minimum, therefore, the FF approach seems to provide additional ammunition in

favour of approaches that tend to bias estimated CAPM betas towards unity, as in the

Bayesian adjustments applied to LBS beta estimates.12

3.6. Conclusions

• The Capital Asset Pricing Model (CAPM) is (still) widely-used to estimate firms’ costs

of capital. There is considerable evidence of empirical shortcomings in the CAPM; but

12Taken further, it would point towards estimates of beta, derived from FF-style equations, that may be
virtually indistinguishable from unity—implying that all that would matter for the estimated equity return
would be the real aggregate stock return (i.e., the safe rate and the equity premium entering symmetrically).
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its clear theoretical foundations and simplicity contribute to its popularity.

• The alternative of nonlinear models of asset pricing have not achieved such popular-

ity. There are several reasons for this. The most important is the problem of ‘data

overfitting’. Nonlinear models are particularly prone to this temptation, since it is

not clear how many degrees of freedom are given to the researcher. The problem is

compounded by the absence of any one method that can test for the problem of over-

fitting. In addition, in many cases a nonlinear model can be approximated well by a

linear model. Finally, recent research suggests that a carefully specified conditional

CAPM—i.e., one in which appropriate time variability is allowed in the parameters of

the linear model—will usually perform better than a nonlinear model.

• Conditional models, in which the parameters are time-varying, have been the focus

of much recent work. As with nonlinear models, the problem of data overfitting is

present; and there is no test to assess the extent of the problem. In addition, there

is no test available to assess whether the correct conditioning instruments have been

used. (Hence there is a current debate about whether a time trend variable is a better

conditional variable than the consumption-wealth ratio.) Despite the large amount of

work in the area, the methodology is some way from being agreed and testable.

• Multifactor models have also received considerable attention, particularly since the

influential work of Fama and French (FF). The standard difficulty with multifactor

models is the satisfactory identification of the factors. There has been, for example,

a considerable debate about whether the small firm factor used by FF is relevant for

other time periods and markets. The risk premia on the two additional factors used

by FF are of marginal statistical significance in their study; when the sample period

is extended to include later data, the premia are not statistically significant. The

inclusion of the factors in the asset pricing model has the general effect of moving the

CAPM beta (i.e., the factor loading on the usual market portfolio) towards 1.

• In summary: the empirical shortcomings of the CAPM are known. Alternative models

to address this issue have their own shortcomings—weak theoretical foundations and

empirical challenges. In our view, there is no one clear successor to the CAPM for

practical cost of capital estimation.
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4. Beta estimation

This section addresses practical issues in the estimation of betas. We consider the following:

• Optimal frequency of data with which to estimate betas.

• Choice of Estimation period.

• Choice of safe rate and definition of excess return.

• Choice of market index, with particular focus on the international mix of assets.

• Bayesian adjustments.

• Estimation of betas for companies with limited stock market data.

4.1. Data Frequency

4.1.1. Theory

It is common for betas to be estimated with weekly or monthly data on the return on the

individual stock and on the market. The LBS Risk Measurement Service, for example,

estimates betas using the most recent 60 months of returns on the stock and the market

(taken to be the return on the FTSE All Share Index). For most stocks daily return data is

available so there is an issue about whether use of weekly or monthly returns is inefficient.

Are we throwing away valuable information by ignoring intra month or intra week movements

in stock prices?

Under certain circumstances there is an unambiguous answer to this question. If we

assume that stock price returns are serially uncorrelated and that the link between the
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market return and the return on the individual stock is the same for all frequencies then

using OLS estimates of beta based on the highest frequency data is optimal. The result is a

straightforward implication of well known properties of OLS estimates.

Briefly the logic is this. Assume that the highest frequency data we have is, say, daily.

The link between the daily excess returns (i.e., return over and above a safe rate) on stock

i and the market is:

Rit = α + βRmt + eit (4.1)

where Rit is the log excess return on asset i at day t (i.e., it is the log return net of the

logarithmic safe rate), Rmt is the log excess return on the market, α is a constant and β is

the beta. eit is the non-systematic component of the return to asset i at time t.

Assume that Rmt = µ + wmt where µ is the mean return on the market and where wmt

is the random component of that return at time t. If the random components of returns (e

and w) are independently and identically distributed (iid) then they have zero expectations,

no correlations and constant variances:

E(wmt) = E(eit) = 0,

E[(wmt)
2] = σ2

m,

E[(eit)
2] = σ2

i ,

E[eiteit−j ] = 0 for all j except j = 0,

E[wmtwmt−j] = 0 for all j except j = 0.

The ordinary least squares (OLS) estimate of β, βOLS , is:

ΣT
t=1(Rit − Ri)(Rmt − Rm)

ΣT
t=1(Rmt − Rm)2

where Ri and Rm and the sample means of the daily excess log returns on asset i and the

market. T is the total number of daily observations we have from which to estimate the

Beta.

Assuming that the random components e and w are normally distributed, βOLS is asymp-
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totically normally distributed with a mean β and a variance of (1/(T − 2))(σ2
i /σ

2
m) i.e.,

βOLS ∼a N [β, 1/(T − 2)(σ2
i /σ

2
m)]. (4.2)

In finite samples the estimator follows an unconditional t distribution. For large samples,

the t distribution will be very much like a normal distribution, but it has slightly thicker

tails.

Suppose we form n period returns (eg we take daily data and form monthly returns by

adding up 20 observations on daily log excess returns to give monthly log excess returns).

This will generate T/n observations.

OLS estimation is still unbiased but will have a larger variance. Using n period aggrega-

tion we would have:

βOLS ∼ N

[

β,
1

T/n − 2

σ2
i

σ2
m

]

.

This implies that for fairly large T , the standard error of the estimate will be roughly
√

n

times larger than if we use daily data.

To give a concrete example. Suppose:

β = 0.8; σm = 0.175; σi = 0.25.

Then the OLS estimate of β will, on average, be 0.8 and 95% of the time it will fall roughly

in the interval of around 2 standard errors either side of 0.8. Assume we use tow years of

data; either 500 daily observations or 25 monthly observations. The standard error of the

estimate based on daily data (that is the standard deviation of the estimate) is

(1/
√

500) × 0.25/0.175 = 0.064,

which means there is a 95% chance that the OLS estimate will be in the range 0.927 and

0.672.

With monthly data, assuming 20 trading days a month, the standard error is 1/
√

(25 − 2)0.25/0.175 =
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0.298, and the 95% confidence interval becomes 1.396 to 0.204.

Clearly there is a huge increase in accuracy with daily data.

It is essential to this argument that the assumptions of iid returns carries over to daily

data. It is also essential that the relation between returns on the market on the individual

stock is the same at 1 day as at a week or a month. Failure of these assumptions could make

using a frequency greater than one day sensible. The issue then is how reasonable are these

assumptions and if they fail what is the right way to handle that.

4.1.1.1. Failure of iid assumption There is evidence that at high frequencies returns

may be correlated. In the US there is some evidence of positive correlation of daily returns

from one day to the next (see in particular Section 2.8.1 of Campbell, Lo and MacKinlay

(1997)). Serial correlation in weekly and monthly returns tend to be somewhat less signifi-

cant, though not absent. It is important to note that this does not affect the unbiasedness

of an OLS estimate based on daily data. But it does affect efficiency and, more important,

will make estimated standard errors misleading.1 Assuming there is much less correlation in

returns from one observation to the next with monthly data, then the problem would be less

with lower frequency data. But a better response thanusing monthly data is likely to be to

use daily data and implement some form of serial correlation adjustment to standard errors

rather than throw the baby out with bath water and go to monthly data.

Certainly if one were to use daily data one should calculate robust standard errors which

are unbiased even if there is serial correlation. To this end one should use a version of

the Hansen Hoderick or Newey and West (1987) procedure. Newey-West standard errors are

consistent in the presence of serial correlation. The option to use them in place of unadjusted

standard errors is now standard with most econometric software packages. What this does

is adjust the reported statistics for the impact of serial correlation.

If heteroskedasticity appears as a problem with high frequency data—and it is NOT

obvious it is more of a problem that with weekly or monthly data—White’s (1980) het-

1In the presence of serially correlated errors OLS is unbiased and consistent; coefficient estimates
are asymptotically normally distributed (assuming underlying processes driving residuals are normal) but
inefficient.
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eroskedasticity corrected standard errors can be computed2. The option to compute White’s

standard errors is also standard on most econometric software nowadays. Many packages

now also produce estimates of standard errors that are robust to both heteroskedasticity and

serial correlation of residuals3

4.1.1.2. Failure of the assumption that the relation between returns is the same

at all horizons For infrequently traded stocks it may be some time before the impact of

a general market movement shows up in the stock price. For large stocks it is very likely that

any impact of general market conditions is reflected in transaction prices and quoted prices

within the same day. Indeed one might find the opposite phenomenon with very highly

traded stocks that the individual stock price moves in response to news ahead of it showing

up in a general index of stock prices. This is a thick trading problem with using daily data

as opposed to a thin trading problem.

For less frequently traded stocks where it may take more than a few hours for new

information to be reflected in measured process a daily beta estimate is likely to be downward

biased. For very heavily traded stocks the impact can go the other way leading to an

overestimate of beta. Two procedures could be followed to handle the issue. First, moving

to lower frequency (weekly/monthly) data will reduce the problem. Second, one could stick

to daily data but include as the regressors in the estimating equation (4.1) the current,

lagged and forward value of the return on the market. That is we estimate:

Rit = α + β1Rmt + β2Rmt−1 + β3Rmt+1 + eit (4.3)

where Rmt−1 is the return on day t − 1 and Rmt+1 is the return on day t + 1.

The estimate of the CAPM beta is then β1 + β2 + β3.

If the stock is very infrequently traded it could be important to add further lags.

The idea behind equation (4.3) is that for stocks that are either very thickly traded or

very thinly traded we may miss some of the typical co-movement between the market and

2For details of the Newey-West and White’s standard errors see, for example, Greene (1993).
3See, for example, Andrews (1991).
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the individual stock by just focusing on co-movement on the same trading day. It may take

a while for the price of the individual stock to adjust to the market in general if it is thinly

traded—this is why we put in a lag of the market return in the equation to estimate overall

co-movement (Rmt−1). For a very heavily traded stock (a thick market stock) it conceivably

could take a while for the general market to catch up with news which is reflected in the

stock’s price almost instantly. This is why we include a lead of the market in the equation

(Rmt+1).

By putting in leads and lags we may be able to preserve the efficiency advantages of

using daily data. But if the thin trading is very serious we might need more than 1 daily

lag. It would be less usual for a thick traded stock to require more than one daily lead of

the market since we do not expect general market news to take more than 1 day to show up

in the overall level of the markets. (More precisely, we do not expect it to take more than

1 day extra for news to show up in the price of the general market than in the price of a

thickly traded stock.)

Of course putting in extra leads and lags adds somewhat to the process of calculating

betas. More important, there is inevitably some uncertainty about how many leads and

lags to include and a degree of arbitrariness about where to draw the line. All this is a

disadvantage of using daily betas. Advantages of extra precision will need to be significant

if this disadvantage, relative to using beats estimated on weekly or monthly data, is to be

outweighed. The empirical evidence we describe below sheds some light on the scale of the

extra precision using daily data can bring.

4.1.1.3. Data issues with daily data: bid-ask bounce Daily data on less frequently

traded stock are also open to measurement problems with the individual stock return stem-

ming from bid-ask bounce. This phenomenon can give spurious negative serial correlation in

returns when a trade at the bid is followed by a trade at the ask. But this is only a problem

if stock prices reflect the last trade at the actual price transacted (i.e., at the end of day bid

or ask). In practice this is not likely to be a relevant issue in the UK. The London Stock

exchange calculates closing prices for heavily traded stocks as the volume weighted average

of all trades in the last 10 minutes of trade. If there has been no trade in the last 10 minutes

the mid point of the best bid and ask is used as the closing price. So the bid-ask bounce
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phenomenon is not, in practice, likely to be much of a problem.

In summary the problems with using daily data are likely to stem from infrequent or non-

synchronous trading. Estimators which produce standard errors robust to serial correlation

and heteroskedasticity (Newey West and White standard errors for example) and the use of

leads and lags in the market index can, in principle, handle these issues. In general we would

expect the gains in precision from having more observations, or the advantages in being able

to rely upon more recent data, would outweigh the disadvantages of inefficiencies due to

induced serial correlation, heteroskedsatisicty and other timing issues. One indication of the

likely scale of the problems with using daily data is the existence of serial correlation and

heteroskedasticty, so at least the existence of problems will be signaled. If there do seem

to be significant signs of these problems with daily data and much less sign of them with

weekly or monthly data this is an argument for looking at beta estimates based on the latter.

Absent such problems using daily data has clear advantages.

One final advantage in using daily data is that no decision needs to be made over which

day to use for measuring returns. For weekly or monthly data estimated betas can be

sensitive to when in the week/month returns are measured

4.1.2. Empirical Evidence

Table 4.1.2 reports the results of estimating the beta of British telecom (BT) using daily,

weekly, monthly and quarterly data. Here we use the FTSE all share index as the market

portfolio. We use data from the 5 year period ending in August 2002. The table shows

unadjusted standard errors and standard errors corrected for heteroskedasticity (White’s

standard errors) and corrected for both heteroskeadsticity and serial correlation.

There are several points to note in Table 4.1.2. First, the standard errors for the daily

estimates are very much lower than with weekly, monthly or quarterly data. Standard

errors from daily estimates are around one third the standard errors from estimates based

on monthly data. This is close to what one would expect (i.e., a ratio of about the square

root of (60/1250) = 0.22). Second the heteroskedasticty and serial correlation adjustments

are significant—and somewhat more so for daily data than for weekly, monthly or quarterly
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No. of obs. Beta Unadjusted
OLS stan-
dard error

Whites het-
eroskedastic-
ity consistent
standard
error

Hetero-
skedasticity
and serial
correlation
consistent
standard
error

Daily 1250 1.052 0.034 0.050 0.056
Weekly 260 0.960 0.074 0.087 0.088
Monthly 60 0.855 0.124 0.127 0.139
Quarterly 20 1.070 0.158 0.195 0.180

Table 4.1: Estimates of the beta of British Telecom—5 year regression window to August
2002

data. But the coefficient estimates are unbiased and are very tightly estimated for daily

data so that any loss in efficiency from using OLS is likely to be small. (The two standard

deviation interval for BT based on daily data is 0.94 to 1.16 using the most robust standard

errors). Third, there is no obvious pattern to the central estimates—the estimate based on

the quarterly data is higher than that based on weekly or monthly data and very close to

the estimate based on daily data; this is in line with the consistency point made above.

Table 4.2 shows estimates of the beta for Vodafone based on daily, weekly and monthly

data over a recent five year period4. This table reveals that the standard error of the beta

estimated from daily date is around one quarter the beta estimated from monthly data and

about one half that estimated from weekly data. This is not too far off the gain in efficiency

that one would expect—based on a 20 day trading month we would expect the daily beta to

have a standard error 1/
√

20 of the estimate based on monthly data (ie. around 22% of the

monthly level). The estimate based on daily data should have a standard error of the beta of

about 1/
√

5 (or 45%) of the weekly beta. Notice that these are unadjusted standards errors

so the gain in efficiency is likely to be somewhat overstated.

The confidence interval on the monthly beta in Table 4.2 is so large that although the

4Reproduced from the paper “Issues in Beta Estimation for UK Mobile Operators”, the Brattle Group,
July 2002.
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estimate seems very far from the estimate based on daily data (0.99 as against 1.65) it only

represents about 1.35 unadjusted standard errors of the monthly estimate. If all the strong

assumptions required to make the estimated standard errors reliable hold we can conclude

the following from Table 4.2: based on the daily data we can be very sure that the true

beta is in excess of 1.3 and very far above the central estimate based on the 60 monthly

observations. Yet there is nothing particularly surprising about the monthly results; so

great is the standard error of the monthly estimate that even though the best guess based

just on that data is that beta is just under unity one could not rule out a beta of 1.65 at

standard (5%) confidence intervals. This rather powerfully reveals the problem with monthly

estimates—unless one uses data from well over 5 years ago the standard errors will generally

be large.

Notice that the estimate of beta based on weekly data exceeds the estimate based on daily

or monthly data. This suggests that one interpretation of the relatively high beta based on

daily data—that it might be biased up by an outlier when Vodafone’s share price and the

market index both rose freakishly or fell freakishly on a single day—is not very convincing.

Estimated beta unadjusted standard error
of estimate

Five years daily 1.65 0.13
Five years weekly 1.89 0.29
Five years monthly 0.99 0.49
Notes: Estimates made in July 2002.

Table 4.2: Estimates of Vodafone Beta based on weekly, monthly and daily data

4.2. Choice of Estimation Period

4.2.1. General issues

There is a great deal of evidence that betas vary over time. This may reflect movements

in gearing, which should have an impact upon equity betas, or changes in the underlying

correlations between company and aggregate returns (i.e., variablility in asset betas). This
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issue is directly relevant to the choice of estimation window. In the absence of an explicit

method for handling time varying covariances and variances the best one can do in handling

changing betas is to use as recent an estimation window as is consistent with estimates

having low standard errors. The tradeoff between using an estimation window that gives low

standard errors (which means having a large number of observations) and one which comes

from a period where beta is likely to be close to its current value (which requires a short

estimation window if there is time-variation) is much more favourable with daily data than

with weekly or monthly data. This is one of the strongest reasons for using daily data. Six

months of daily data will give about 120 observations—the equivalent of 10 years of monthly

data. While a company beta, in the absence of some obvious change in the nature of the

business, is unlikely to be dramatically different to the past over a 6 month horizon , it is

often very different from its value 10 years ago.

It is important in this context to note that the gain in estimation accuracy—as measured

by the fall in the standard error of the estimated beta—from having more observations

becomes less as more observation are added. With daily data going from 250 observations

to 500 observations (i.e., from a 1 year window to a 2 year window) will reduce the standard

error by about 40 percent. Going from 2 years to 3 years will, other things equal, only reduce

the standard error by about 22%; extending the estimation window another 1 year, from 3

to 4 years, reduces the standard error by a further 15%.

Use of an explicit technique to handle time-varying variances and co-variances is, in some

ways, the ideal solution. Not only does this allow one to use data from periods when beta

may have bee very different but it also allows one to project future changes in beta since a

projected path for variances and co-variances can be derived from a model of the time series

evolution of the moments of the data. (An example of the technique is Hall, Miles, and

Taylor (1989). But a major drawback of the technique is that it is susceptible to over-fitting

and can reveal apparent signs of time variation where none exist, especially if complicated

models of time variation is used. At a more practical level, it involves use of techniques that

are highly non-linear and not widely used amongst practitioners who estimate betas. So

there would be a problem of getting a beta estimated with a time varying technique to be

widely accepted as a standard estimate—this is partly because there are many different ways

to model time variation (GARCH, EGARCH, GARCH in mean and many newer variants).
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As with serial correlation and heteroskedasticity, there are at least some obvious tests

of whether time variation is a problem—formal statistical tests of breaks in the process as

well as less formal tests like observing the plot of how estimates of beta based on a fixed

estimation window evolve (see below).

Our recommendation is that using between one year and two year periods with daily data

will generally give low standard errors and that if the one year betas and two years betas are

little different the time variation problem is unlikely to be significant. If those betas do look

different one could estimate one year and six month betas and if these are little different use

the one year beta.

4.2.2. Empirical Evidence

Figures 4.1–4.8 show the results of rolling regressions to estimate the beta of British telecom.

We use daily, weekly, monthly and quarterly data from the period 1990 to August 2002. Each

figure shows the evolution of the beta estimated on the latest 5 years of data. The estimates

are updated at the end of each month. The firsts set of results use as the market index the

FTSE all share index; the second set of graphs show the betas when we use a market index

made up of 70% FTSE all share index and 30% the FTSE world stock index (converted into

£ terms).

The graphs reveal apparent signs of major changes in beta when we use monthly or

quarterly data. The monthly beta bade on the FTSE all share index moves from under

0.8 up to around 1.2 over the sample period. The daily and weekly betas, in contrast, look

much more stable and rarely move much from unity. This illustrates one of the problems with

using monthly data—a five year window only gives 60 observations and random fluctuations

in estimated beta will arise as one observation is dropped and one added because the standard

error of the estimate is large. This problem is smaller with weekly data and much lower with

daily data. Notice that the standard errors with monthly and quarterly estimates are so

large that despite the very large fluctuations in the estimated beta they hardly move outside

the 2 standard error ranges estimated at the outset.

87



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.1: 5 yearly BT betas on daily data and the FTSE all share

88



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.2: 5 yearly BT betas on weekly data and the FTSE all share
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Figure 4.3: 5 yearly BT betas on monthly data and the FTSE all share
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Figure 4.4: 5 yearly BT betas on quarterly data and the FTSE all share
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Figure 4.5: 5 yearly BT betas on daily data and a market index
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Figure 4.6: 5 yearly BT betas on weekly data and a market index
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Figure 4.7: 5 yearly BT betas on monthly data and a market index
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Figure 4.8: 5 yearly BT betas on quarterly data and a market index
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4.3. Choice of safe rate and definition of excess return

For estimation purposes we should be measuring excess returns—that is returns in excess of

the safe rate. Two issues arise. How exactly are returns measured and how do we measure

the safe rate? The natural answer to the second question is that we should take the return

on an asset that over the relevant period generates a return with (close to) a safe real rate of

return. If the relevant time horizon for measuring returns is one day the asset is likely to be

an overnight money market rate (eg LIBOR). With monthly data either monthly LIBOR or

the return on one month Treasury bills could be used (and in practice it will not make much

difference which is used). Although the real return on such assets is not certain, because

inflation is not entirely predictable, with very short time horizons of under a month the

divergence between the degree of certainty of real and nominal returns is small; with daily

data it would only be an issue in times of hyperinflation.

The great advantage of defining returns in logarithmic form is that aggregation for returns

over varying horizons is then exact (ie. the one month log return is the sum of the logs of

the daily returns and so on). Thus the recommended definition of the excess return at time

t is:

Rit = ln

(

Pt + Dt

Pt−1

)

− ln(1 + Rft)

where Pt is the price of the stock at date t, Pt−1 is the price of the stock at t − 1, Dt is per

share dividend paid at time t (in practice this means the date at which the stock goes “ex”

rather than the date at which payment of dividends is actually made), and Rft is the one

period safe rate of interest at time t.

4.4. Choice of market index, with particular focus on international mix of

assets

What range of assets should be included in the market portfolio? The CAPM rests upon

the mean variance approach. The key result there is that the market portfolio contains all

the risky assets that exist and that all agents hold these risky assets in the same proportion
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within their risky portfolios. It is obvious that these assumptions are strikingly at odds

with the facts. The major holders of UK stocks are UK institutions (pension funds and life

insurance companies). Their portfolios in recent years have been roughly 70% invested in

assets issued by UK companies and by the UK government. Overseas assets make up only

around 25% of all assets. Property, gold, paintings etc make up a smaller fraction of their

portfolios than the value of such assets in global wealth.

One pragmatic approach is to take the CAPM as a guide and use as the market portfolio

of risky assets a portfolio which reflects the composition of assets held by the dominant

owners of the stocks in question. For most regulated UK companies this would imply the

relevant portfolio is one with a high weight on UK equities (by which we mean FTSE all

share stocks), a significant, but smaller, weight on UK bonds and with smaller weights on

Continental European, Asian and US stocks. A portfolio that was 50% the FTSE all share

index, 20% UK gilts, 10% overseas bonds and 20% the FTSE global share index (in £ terms)

might be a rough approximation to this. (For more details on portfolios and the degree of

international diversification see Dimson, Marsh, and Staunton (2001c); they estimate that

UK investors put about 70% of their money into UK markets).

In practice when estimating betas it is more common to use the returns on an all equity

portfolio and to use a domestic stock price index. The LBS risk measurement service uses

the return on the FTSE all share index as its measure of the market return. Betas of many

(though certainly not all) UK companies might be somewhat higher with respect to that

portfolio than with respect to the “typical UK investor” portfolio outlined above. Some

regulated companies with substantial overseas interests might have a higher beta on their

overall activities with respect to the “typical UK investor” portfolio than with respect to a

UK stock market index. The regulated UK activities of such international companies are

likely, however, to have a higher beta with respect to a UK stock price index than with

respect to a “typical UK investor” portfolio.

How to measure the beta of a part of the activities of a company—say the regulated

UK activities of a company with a large overseas interest—is an important related issue. If

we have a good estimate of the value of the relevant assets relative to the whole and we

have estimates of the beta of the assets that are used in overseas business then a simple

adjustment can be made to the overall company beta. Let the assets that generate regulated
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business be denoted Areg and the assets in other business be Aoseas Let the overall estimated

beta for a company be β and assume we have a good estimate of the beta on overseas asstes

which is βoseas. The beta we want is the beta of the regulated activities, i.e., βreg. A well

know property of betas is that the beta on any portfilio is the weighted average of the betas

on the constituent parts. This implies:

β = βreg ×
Areg

Areg + Aoseas
+ βoseas ×

Aoseas

Areg + Aoseas

which can be re-arranged to yield:

βreg = β × Areg + Aoseas

Areg
− βoseas ×

Aoseas

Areg
.

The practical problem, of course, is to estimate the relative value of the regulated to

non-regulated parts of the business (i.e., Areg/(Areg + Aoseas)) and the value of the beta

on the non-regulated part, which we have called the “overseas” beta, βoseas. A standard

procedure is to estimate βoseas by using stock price data on overseas companies in the same

line of business and estimate their beta by reference to the market index used in constructing

β. This market index we have called “the typical UK investor” and will have a high weight

in UK equities. It is very likely that the resulting estimate of βoseaswill be well below the

estimate of β so that the estimate of βreg would be above β. If Areg/(Areg + Aoseas) were

small the estimate of βreg could be very much larger than β. For example, if regulated (UK)

activities were 50% of all activities and the overall beta was 0.9 while the overseas beta

was 0.3 the regulated Beta would be 1.5. Errors in measuring βoseas can have a very major

impact upon this calculation. Suppose that the true βoseas was 0.5 rather than 0.3; the true

value of βreg would then be 1.3 rather than 1.5. If Areg/(Areg + Aoseas) were smaller than

1/2, the impact of mis-measurement of βoseas would be amplified.

There is no easy answer to this problem. All one can do is to consider a range of different

overseas companies as comparators and calculate a range of different estimates of βreg based

on the various alternatives and also based on different estimates of Areg/(Areg + Aoseas).

Of course the real issue for regulators is less about finding the beta of the assets associated

with the UK activities of a company but more about finding an estimate of the beta of the
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assets used in the regulated part of the business. If there are many assets used in the

domestic business for activities which are not regulated then the overseas/domestic split is

not the right one. But in practice the methodology for getting the appropriate beta is always

going to be the same: we need an estimate of the overall company beta and then a separate

estimate of the beta of the non-regulated bit. Then we use the well known relations above5

to work out the beta of the regulated assets based on the relative weights of the assets used

in the regulated part of the company to all its assets.

4.4.1. Empirical evidence

Table 4.3 shows estimates of the British Telecom beta based on 2 different estimates of the

market return: the FTSE all share index (as in Table 4.1.2); a weighted average of 70% of

the FTSE all share index and 30% of the FTSE world index (converted into sterling terms).

Figures 4.1–4.8 show the rolling regression betas based on the different definitions of the

market index.

The figures show that for daily or weekly data there is very little difference between the

results. Things are rather different for the monthly data where using the mixed portfolio

gives a much more stable estimate of beta which is lower than other estimates. Table 4.3

shows that the beta estimates based on the latest five years of data are little different with the

“typical” (mixed) portfolio—this is largely because the typical portfolio has a large weight

on UK stocks, itself a reflection of the so-called home bias puzzle.6

4.5. Bayesian Adjustments

The average beta across all stocks will be close to unity; if we use market weights in this

averaging, and the market is the one used for estimating the betas, this average will be

exactly unity. Betas on individual stocks will be estimated with error. It follows from these

5I.e., that the overall beta of a company is the weighted average of the beat of the assets used in different
activities.

6The puzzle is why domestic investors hold such a high proportion of their wealth in domestic assets,
thereby apparently missing out on opportunities for efficient portfolio diversification.
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No.
of
obs.

Beta: UK
market in-
dex

Robust stan-
dard error

Beta: 70% UK;
30% world in-
dex

Robust stan-
dard error

Daily 1250 1.052 0.050 1.082 0.059
Weekly 260 0.960 0.088 1.066 0.223
Monthly 60 0.855 0.139 0.845 0.141
Quarterly 20 1.070 0.180 1.059 0.197

Table 4.3: Estimates of the beta of British Telecom—5 year regression window to August
2002

two propositions that for sampling reasons estimated betas significantly in excess of unity are

likely to overstate beta and estimated betas well under unity are likely to be underestimates.

A standard Bayesian adjustment to the “raw” estimate (eg the OLS estimate) takes account

of the prior information (that the typical beta is unity). The resulting Bayesian estimate

would be:

βadj = βOLS × V ar(βpop)

V ar(βpop) + SE2(βOLS)
+ 1 × SE2(βOLS)

V ar(βpop) + SE2(βOLS)

where: SE2(βOLS) is the standard error squared of the OLS estimate of beta (see equation

(4.2) above), and V ar(βpop) is the variance of beta across the sample of firms for whom

average beta is unity.

The logic behind the adjustment is straightforward. If there is lots of noise in estimating

an individual stock beta from OLS regression (SE2(βOLS) is large) then one should attach

a good deal of weight to the fact that on average we expect beta to be unity and relatively

less weight to the estimate based on the OLS regression.

This equation assumes that the only information one has on the company beta besides

the cross section average of unity is the OLS estimate—in other words prior to the OLS

regression there was no reason to consider the most likely value of beta to be other than

unity.

Reasonable estimates of V ar(βpop) can be assessed by looking at the dispersion of betas

estimated by, for example, Bloomberg or by the LBS Risk Measurement Service. Both
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Bloomberg and the LBS risk measurement service use their estimates of the variability

across companies to make a Bayesian adjustment to their betas. Estimates of SE2(βOLS)

are automatically produced by regression packages.

The logic behind making the Bayesian adjustment is strong. In practice, if daily data

are used it is likely that SE2(βOLS) will be small relative to V ar(βpop) and the Bayesian

adjustment will be small.

For example, the variance of the estimated betas of the FTSE 100 companies reported in

the June 2002 edition of the LBS Risk Management service was around 0.13 7. (This is the

variance of the estimated betas which have already been adjusted towards unity because LBS

use a Bayesian adjustment). The estimates of the Vodafone beta in Table 4.2 are unadjusted.

Table 4.4 below shows how those estimates would be adjusted using our estimate of the cross

section variance of betas of 0.13.

Unadjusted beta Adjusted (“Bayesian”) Beta
Five years monthly 0.99 0.99
Five years weekly 1.89 1.55
Five years daily 1.65 1.58

Table 4.4: Estimates of adjusted and unadjusted Vodafone Beta based on weekly, monthly
and daily data

Unadjusted beats are as in Table 4.1.2 and are estimates of the Brattle Group (July 2002

report “Issues in Beta Estimation for UK Mobile Operators”).

The important point about Table 4.4 is that even though the unadjusted estimate of the

daily beta is very far from unity, the Bayesian adjustment has relatively little impact since

the variance of the estimate of the Vodafone Beta based on daily data (0.132) is only one

around one eighth the size of the variability in betas across companies.

7The highest estimated beta was 1.88 and the lowest 0.22.
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4.6. Estimation of betas for companies with limited stock market data

There are several approaches to estimating the beta for the activities of a company where

past data on the market rate of return on those assets derived from stock market prices is

unavailable. The two common approaches are:

1. Use of the estimated betas of companies in similar lines of business and for whom stock

market rates of return have been available.

2. Construction of an alternative beta estimate based upon the data that is available for

the company in question. This data might include accounting rates of return or cash

flow.

Strategy 1 is only successful where the comparator companies really are involved in the

same line of business and have the same level of gearing. Adjusting for differences in gearing

is straightforward and simply involves first un-gearing the beta of the comparator company

to get an estimate of the asset beta and then using the current gearing of the company in

question to re-gear the beta.8 But there is no easy fix where the underlying business of

the comparator companies is not really the same, either because they operate in different

markets, produce different goods or are subject to different tax and regulations.

Strategy 2 depends upon being able to construct some sort of quasi rate of return from

(usually) accounting data. One approach is to construct a rate of return by taking the ratio

of accounting earnings to a measure of capital employed. A pure equity beta is, of course,

the beta of the equity financed part of a firm’s activity so an appropriate proxy based on

accounting data could be:

After tax earnings net of interest on debt (i.e., equity earnings)

Total capital employed minus net debt
. (4.4)

Using this measure of the rate of return a beta can then be constructed in one of 2 ways.

8If the comparator company has a ratio of debt to debt plus equity (gearing) of g1 and the gearing rate
of the company for whom an estimate is required is g0 the procedure is simply to multiply the comparator
company equity Beta by the ratio (1 − g1)/(1 − g0).
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a by defining a time series of comparable accounting rates of return for all corporate assets

using aggregate corporate sector counterparts for the numerator and denominator of

equation (4.4). This series is then used as the proxy for Rmt in a regression equation

analogous to equation (4.1) above;

b by using the accounting rate of return in place of the market rate of return for company

i in a standard CAPM but using the stock market return on the market portfolio (i.e.,

like equation (4.1) using something like the FTSE all share index or the return on the

“typical UK investor” portfolio).

Approach b is likely to give low and downward biased estimates of true beta since stock

market returns are much more variable that accounting rates of return.

But there is evidence from the US that strategy a generates sensible looking numbers for

beta which are quite highly correlated with the stock market beta. For example Beaver and

Manegold (1975) find that there is very significant correlation between the accounting betas

and the standard market betas for a large sample of firms where both could be estimated.

In practice estimation of the accounting betas following strategy a. above will give average

betas that are likely to be close to unity—which is desirable—whereas strategy b. will likely

generate low average betas. But following strategy a. requires that we estimate accounting

rates of return for a very large sample of companies and not just for the company whose beta

we are interested in. This is because we need to estimate a proxy for the market accounting

rate of return. This means we need accounting data on a large sample of companies over a

long period. If we only have annual rates of return we would need at least 20 years to get a

beta estimate. This means that problems of time variation in underlying betas are likely to

be very severe. Use of quarterly accounting data would help a good deal here. Nonetheless

the practical difficult of using accounting data to estimate betas are formidable.

4.7. Conclusions

• There is a case to be made for using daily, or perhaps weekly, data rather than monthly

data in estimating beta. For a share where trading is not significantly thinner or thicker

than for the market as a whole, using daily data has real advantages.
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• But where there may be a lag between the impact some events have on a particular

share and the market in general going to lower frequency data can help. If one had to

use the same estimation frequency for a very large number of different companies there

is an argument that you have to go to weekly or monthly data because some stocks

really take time to catch up with general market news.

• But regulators do not need to use the same frequency of data for estimates of different

companies (unlike a commercial provider like the LBS which has standardised proce-

dures and runs an automated service where all companies betas are calculated in the

same way using 50 monthly observations). We conclude that using daily date may be

right for many—but not—all companies.

• Adjusting standard errors for heteroskedasticity and serial correlation is important.

Fortunately this is now a standard option in most econometric packages.

• A case can be made that a portfolio which reflects the mix of assets of the typical

stock holder in the company should be used as the “market portfolio”. For large UK

companies whose shares are largely held by UK investors this implies a market portfolio

with about 70% of its weight on UK assets and 30% on overseas assets. All returns

should be in sterling.

• While in theory making a Bayesian adjustment is correct, in practice this may not

make much difference if daily data is used because the standard error of the estimated

beta is likely to be small relative to the variability in betas across companies. With

monthly date the Bayesian adjustment is likely to be more significant.
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5. Consistency in Cost of Capital

Estimation

Even the best current estimates of the core components of asset pricing models are subject

to considerable uncertainty. For example, standard errors on estimates of the equity risk

premium are typically around 3%, on a point estimate of about 6.5%. This raises the key

issue of how to deal with the inherent uncertainty surrounding cost of capital estimation.

One approach is simply to use the point estimate, accepting that approximately half the

time the actual value of the cost of capital will be above, half of the time below this level.

Such an approach implicitly assumes that the ‘loss’ from over-estimation is about the same

as the ‘loss’ from under-estimation. Whether this assumption is valid depends very much on

what the ‘loss’ is.

In cost of capital calculations for regulation, the loss from incorrect estimation takes the

form of inefficient price setting and investment decisions. If the price cap is set too low (i.e.,

the cost of capital is underestimated), then the firm will make an inefficiently low investment

in the market, which leads to a deadweight loss. If the price cap is set too high (i.e., the

cost of capital is overestimated), then the regulator fails to restrain the exercise of market

power by the monopolist; the deadweight loss in this case arises from price being set above

marginal cost.

In order to show examine these factors in more detail, it is helpful to develop an explicit

microeconomic model of price regulation, investment and cost of capital uncertainty. While

the model is, inevitably, stylized, it captures the main issues that are of interest.
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5.1. A Model of Price Cap Setting with Cost of Capital Uncertainty

Suppose that a regulator uses price cap regulation to regulate a monopolist: that is, the

monopolist is constrained to charge a price no higher than p∗, say. The monopolist sells a

single product into a market with total demand given by D(p), where p is the price set by

the monopolist and D(p) is the demand at that price. We assume (non-controversially) that

demand is decreasing in price.

The monopolist has two costs to producing an amount q. The first is a production cost,

relating to purchasing of equipment, wages paid to workers, the price of inputs etc.. Let this

cost be C(q). The second is the cost of capital: dividend payments on equity and interest

payments on debt. Investors require a return of k > 0, say, on their investment, which is

taken to be the production cost of the firm C(q). Hence the total cost of the firm, which is

the sum of production and financial costs, is (1+k)C(q) when producing an amount q. In the

rest of the analysis, we do not need to make any stronger assumptions on the cost function

other than it is increasing and convex (and even the latter can be relaxed somewhat). It will

make the exposition much clearer, however, if we specialize to the case in which marginal

costs are constant and fixed costs are zero:

Assumption 3: C(q) = cq, where c > 0.

Here, c is the marginal cost of production. To repeat for emphasis: assumption 3 is made

for convenience, and the following can be shown to hold for more general cost functions.

Finally, we assume that the regulator aims to maximize an unweighted sum of consumer

and producer surplus; or, equivalently, to minimize the dead-weight loss in this market. The

firm maximizes its profit.

5.2. The Deadweight Loss when the Cost of Capital is Known

There are two factors that a regulator must balance when setting the price cap. If the price

cap is set too low, below the marginal cost of the regulated firm, then the firm will not
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operate—if it did, it would make a loss. There is then a deadweight loss from the non-

operation of the firm. It is worth clarifying at the outset what is meant by “not operating”.

One interpretation is that, literally, the regulated firm will exit its industry due to strict

regulation. An alternative, less extreme interpretation is that this model analyses a specific

investment or project, rather than an entry/exit decision; and that non-operation means

that the project is not carried out. If the price cap is set too high, then the regulator fails

to restrain the exercise of market power by the monopolist; the deadweight loss in this case

arises from price being set above marginal cost.

The deadweight loss is plotted against the price cap in figure 5.1, assuming that the

firm’s cost of capital is known. Note that there are three regions. In region 0, the price cap

is below the firm’s marginal cost, and so the firm does not operate. The deadweight loss

in this region is denoted DWL0. If in this case the firm ceases operation altogether, then

DWL0 is the entire surplus that could have been gained from efficient operation of the firm

i.e., the entire area under the demand curve:

DWL0 =

∫ p0

(1+k)c

D(p)dp

where p0 is the ‘choke-off’ price at which demand is zero (D(p0) = 0). In the case that the

firm’s response to the low price cap is to undertake an alternative, less valuable project, the

deadweight loss will be the difference in the surpluses of the project that is cancelled and

the substitute project.

In region I, the price cap is above marginal cost, but below the profit-maximizing price,

pm. In this region, the deadweight loss is increasing and convex in the price cap:

DWL1 =

∫ p

(1+k)c

D(p)dp − (p − (1 + k)c)D(p);

∂DWL1

∂p
> 0;

∂2DWL1

∂p2 > 0.

It is illustrated in figure 5.2. Finally, in region II, the price cap is above the profit-maximizing
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Figure 5.1: The Deadweight Loss against the Price Cap p

price; the cap does not bind, and the deadweight loss is

DWL2 =

∫ pm

(1+k)c

D(p)dp − (pm − (1 + k)c)D(pm).

This case is similar to region I, and so is not illustrated.

The optimal price cap when the firm’s cost of capital is known by the regulator is

straightforward—it equals the marginal cost (1 + k)c. In the next section, we consider

how the optimal price cap changes when the regulator does not know the firm’s cost of

capital.

5.3. The Deadweight Loss when the Cost of Capital is not Known

Now suppose that the regulator is not fully informed about the firm’s cost of capital, but

must instead form an estimate of it that is subject to error. Suppose that the regulator’s

point estimate is k̂; we model uncertainty in the following way:
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Figure 5.2: The Deadweight Loss in Region I

Assumption 4: The regulator’s estimate k̂ equals the firm’s true cost of capital k plus noise

i.e., k̂ = k + η, where η is uniformly distributed on the interval [−ε, ε] for ε ≥ 0.

The parameter ε therefore represents the accuracy of the regulator’s estimate of the cost

of capital. If ε = 0, then the regulator estimates perfectly the cost of capital; otherwise,

there is error in the estimate. The 95% confidence interval attached to an estimate k̂ is

[k̂ − 0.95ε, k̂ + 0.95ε]. Both the regulator and the firm are perfectly informed about all

other aspects: demand and production costs.1 The assumption that the error is uniformly

distributed is not at all restrictive: the uniform distribution simplifies calculations, but could

easily be replaced with a more general distribution with little change to the qualitative

conclusions.

1In this model, therefore, there is asymmetric information about the firm’s marginal costs, as is the
case in the seminal article on regulation, Baron and Myerson (1982). Note that the price-cap regulation
considered here is not, in fact, the optimal regulatory form: in this set-up, that would typically require the
regulator to give lump-sum transfers to firms. Such transfers are not usually observed, however, while price
cap regulation (in one form or other) is commonly used e.g., in the U.K..
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With this framework, we would like to address the question: should the regulator simply

use the point estimate k̂ of the cost of capital, or would it be better to use some other value?

If some other value should be used, what factors determine the optimal value?

When the regulator estimates the cost of capital to be k̂, it knows that the true cost of

capital lies somewhere in the interval [k̂−ε, k̂ +ε]; but as far as it is concerned, the true cost

of capital is a random variable, with a uniform distribution over this interval. Three cases

are important:

1. DWL0 > DWL1((1 + k̂ + 2ε)c) i.e., the deadweight loss from non-operation is sub-

stantially larger than the deadweight loss when the firm operates under the price cap.

The expected deadweight loss in this case is illustrated in figure 5.3. The figure makes

clear that the optimal price cap in this case is p∗ = (1 + k̂ + ε)c i.e., the price cap is

set so that even the highest cost firm operates. The reason is that the deadweight loss

DWL0 from non-operation is so large that it is optimal for the regulator to set the

price cap to avoid any possibility of non-operation, while (subject to this) minimizing

the mark-up of the monopolist.

2. DWL1((1+k̂+ε)c) > DWL0 i.e., the deadweight loss from non-operation is small com-

pared to the deadweight loss from the monopoly mark-up. The expected deadweight

loss in this case is illustrated in figure 5.4. The figure makes clear that the optimal price

cap in this case is p∗ < (1 + k̂)c i.e., the price cap is set below the expected marginal

cost of the firm. The reason is that the deadweight loss DWL1 from the monopolist’s

mark-up is so large (compared to the deadweight loss from non-operation DWL0) that

it is optimal for the regulator to lower the price cap to minimize the mark-up.

3. DWL1((1 + k + ε)c) ≤ DWL0 < DWL1((1 + k + 2ε)c) i.e., the intermediate case.

The expected deadweight loss in this case is illustrated in figure 5.5. The figure makes

clear that the optimal price cap in this case is greater than the expected marginal cost

(1 + k̂)c, but smaller than (1 + k̂ + ε)c. Neither source of deadweight loss is dominant;

the optimal price cap balances the two, leaving a positive probability that the firm

does not operate (since p∗ < (1 + k̂ + ε)c) and a positive probability that there is a

monopoly mark-up (since p∗ > (1 + k̂ − ε)c).
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Figure 5.3: The Expected Deadweight Loss in Case 1

Note in particular that the price cap should be set equal to the expected marginal cost

(1 + k̂)c (i.e., the marginal cost based on the point estimate of the cost of capital) only in

the exceptional case that DWL0 = DWL1((1 + k̂ + ε)c).

What can be said, then, about the optimal price cap p∗? That depends on the case:

1. When the dead-weight loss from non-operation dominates, the optimal price cap is

determined by the regulator’s cost of capital estimate and the cost of the firm. The

optimal price cap is higher when

• the estimate of the cost of capital k̂ is higher; and

• the regulator’s uncertainty about the cost of capital, ε, is higher.

2. When the dead-weight loss from non-operation is small, the optimal price cap is de-

termined by the regulator’s cost of capital estimate, the cost of the firm and market

demand. The optimal price cap is higher when

• the estimate of the cost of capital k̂ is higher;
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Figure 5.4: The Expected Deadweight Loss in Case 2
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Figure 5.5: The Expected Deadweight Loss in Case 3
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• the regulator’s uncertainty about the cost of capital, ε, is lower;

• the deadweight loss from non-operation is higher;

• the elasticity of demand, measured by D′(p∗), is lower.

3. When the dead-weight loss from non-operation is moderate, the optimal price cap is

again determined by the regulator’s cost of capital estimate, the cost of the firm and

market demand. The optimal price cap

• is higher when the estimate of the cost of capital k̂ is higher;

• does not depend on the regulator’s uncertainty about the cost of capital, ε;

• is higher when the deadweight loss from non-operation is higher;

• is higher when the elasticity of demand, measured by D′(p∗), is lower.

Some of the properties of the optimal price cap are obvious enough: for example, that

it is higher when the point estimate of the cost of capital, or the deadweight loss from non-

operation are higher. Some of the properties are more surprising. Consider the relationship

between the degree of uncertainty and the optimal price cap. In case 1, greater uncertainty

(a higher ε) increases the price cap, because in this case, the price cap is set equal to the

estimate of the highest marginal cost. In case 2, however, greater uncertainty lowers the

optimal price cap; this is because, in this case, the price cap is set with bearing in mind the

estimate of the lowest marginal cost (in this case, the degree of the monopoly mark-up is

all-important). In case 3, the degree of uncertainty has no effect on the optimal price cap:

ε drops out of consideration when the two components of the expected deadweight loss are

combined. Now consider the relationship between the optimal price cap and the elasticity of

demand. When demand is elastic, the deadweight loss from the monopoly mark-up is large;

hence the price cap should be low.

5.4. Extensions

Our analysis in this chapter is quite general—we have made few assumptions, and none of

those has any significant qualitative effect on the conclusions. In this section, we consider

briefly a couple of variations on the basic story.
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5.4.1. Alternative Forms of Regulation

We have concentrated on cost of capital estimation under price cap regulation. This is a

reasonable emphasis, given the prevalence of price cap regulation in the U.K.. Other forms

of regulation are possible, however; and indeed other forms are used, even in the U.K.. The

usual contrast to a price cap is rate of return regulation, where the level or rate of profits

of the regulated firm is controlled. In its most extreme version, the firm would be regulated

so as to achieve its target rate of return; it would, therefore, be allowed to increase prices

in the event that costs are high. In this extreme case, there would be no dead-weight loss

from non-operation of the firm; instead, inefficiency may arise from the low incentives that

the regulated firm faces to decrease its costs.

While this is the usual contrast drawn between rate of return and price cap regulation, it

is, in fact, fairly spurious, at least in the simplest setting. Both forms of regulation, if set to

reflect actual costs, ensure that the firm always operates, and provide insufficient incentives

for cost reduction. Both forms of regulation, if set to reflect estimated costs, can give rise

to cases in which a high cost firm does not operate. The analysis in this section is not,

therefore, specific to price cap regulation, but applies to any form of regulation that is set

on the basis of estimated, rather than actual, costs.2

5.4.2. Alternative Forms of Uncertainty

The analysis has focussed on uncertainty about the firm’s cost of capital, for obvious rea-

sons. The analysis could equally well apply to uncertainty about different aspects of the

regulated firm’s operating environment. The analysis assumed that demand and production

costs are known perfectly by the firm and the regulator; the only informational asymmetry

concerned the cost of capital. It would be straightforward to extend the analysis to incorpo-

rate alternative aspects of information asymmetry and uncertainty. This would not change

the qualitative conclusions in any significant way. The dead-weight loss trade-off faced by

the regulator would remain; and hence different regulators are likely to use different val-

2If the regulated firm knows its true cost of capital, then an optimal regulation scheme can be used to
induce the firm to reveal this information. See footnote 1, however.
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ues for cost of capital estimates even when there are other dimensions to uncertainty and

information asymmetry.

5.5. Conclusions

This chapter has developed a micro-economic analysis of regulation when the regulator is

imperfectly informed about a firm’s cost of capital. It has demonstrated the following key

points:

• The optimal price cap is set taking into account the point estimate of the cost of

capital.

• The optimal price cap is higher when the point estimate of the cost of capital is higher,

when the deadweight loss from non-operation is higher, and when the elasticity of

demand is lower.

• The optimal price cap may not depend on the degree of uncertainty in the estimate of

the cost of capital.

• When the optimal price cap does depend on the degree of uncertainty, it may be either

an increasing or decreasing function of the degree, depending on which component of

the deadweight loss is dominant in the regulator’s problem. If non-operation of the

firm causes the greater welfare loss, then higher uncertainty increases the optimal price

cap. Conversely, if a monopoly mark-up causes the greater welfare loss, then higher

uncertainty decreases the optimal price cap.

• The results can be phrased in an alternative way by defining the effective cost of capital

estimate to be the level of the cost of capital at which marginal cost equals the price

cap.3 A higher price cap corresponds, therefore, to a higher effective cost of capital;

and vice versa.

3So, with a price cap of p, the effective cost of capital k is given by p = (1 + k)c i.e., k = p/c− 1.
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• The analysis then means that the effective cost of capital estimate that should be used

by a regulator will depend on demand and cost conditions, as well as the point estimate

and error in cost of capital estimation.

• Therefore two regulators who share the same point estimate and confidence interval for

the costs of capital for their regulated firms will, in general, choose different effective

costs of capital for price cap purposes, to reflect the demand and cost characteristics

of the firm that they regulate.
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6. Regulatory Risk

In this section, we consider the impact that regulation can have on a regulated firm’s cost

of capital. Three main issues are analysed:

1. What is the effect, if any, of regulatory inconsistency on a firm’s cost of capital?

2. In what ways can different forms of regulation affect a firm’s cost of capital?

3. How will a firm react to regulation that affects its cost of capital?

Incentive regulation (such as RPI - X) has three major objectives. The first is to

ensure that the regulated firm does not charge excessive prices, and so reduce social welfare.

The second is to provide the firm with an incentive to operate at minimum cost, to invest

appropriately and to innovate. The third is to reveal to the regulator information about the

firm that is relevant for the regulatory scheme.

These three objectives are generally in conflict. If a regulator were perfectly informed

(about e.g., current and future costs), it could simply set the level of prices required to

maximize social surplus. No such regulator exists, however, and any regulatory scheme must

give up surplus to the regulated firm in order to elicit information and efficient investment.

Optimal price regulation, for example, balances the three objectives by setting prices so that

(i) by the end of the price control period, the regulated firm earns a level of return close to

its cost of capital; (ii) the firm can earn excess profits during the review period if it lowers

its costs; and (iii) the firm reports accurately its costs to the regulator.

Laffont and Tirole (1986) and Laffont and Tirole (1993) have shown that the best pricing

scheme that can be used is a combination of a price cap (a ceiling on the prices that the

firm can charge) and a cost-plus component (allowing certain cost changes to be passed
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on in increased prices). The price cap provides an incentive for cost efficiency. The cost-

plus component provides the firm with an incentive to report truthfully its costs. Both

components are set as low as possible, subject to the provision of adequate incentives, to

maximize social welfare.

These theoretical principles are applied widely in U.K. regulation. RPI - X is a hybrid of

price cap and cost-plus regulation, emphasizing dynamic incentives towards cost reductions.

Other forms of regulation are, of course, used. Revenue caps place a limit on the total

income of a firm (such as used for Northern Ireland Electricity). Rate-of-return regulation

allows the regulated firm to earn an agreed rate of return on its capital; this regulation is

less commonly used in the U.K., but was favoured previously in the U.S..

A question that has received relatively little attention is whether, in setting regulation

to provide the best incentives for efficiency and information, the regulator might contribute

to the amount of risk that a firm faces. If regulation increases risk and hence the regulated

firm’s cost of capital, then this fact must be incorporated in the setting of e.g., the price

cap. If it is not, then the price cap may be set too low and the investment decisions of the

regulated firm distorted.

To assess the validity of this argument, we must first derive a satisfactory definition of

‘regulatory risk’: in what ways can regulation contribute to risk? Armed with a correct

definition, we can then analyse the full effect of regulation on risk, recognising how the

regulated firm can react.

6.1. The Definition of Regulatory Risk

The first step is to develop a satisfactory definition and description of regulatory risk. The

most obvious definition states that regulatory risk arises whenever regulation affects the cost

of capital of the regulated firm. This definition fails, however, to distinguish between two

conceptually different forms of regulatory risk. The first arises from factors that are external

to the firm and the regulator (such as macro-economic shocks), but have an impact on the

regulatory scheme employed (e.g., the level of a price cap, in the case of RPI - X regulation).

The second arises from factors that are under the regulator’s control, and the choice of which

118



is regarded as uncertain by the regulated firm and investors. This section deals with the

latter; the former is analysed in more detail in the next section.

A common concern among those involved in regulation is that the regulator can itself

introduce risk, through unpredictable or unjustifiable regulatory intervention, so raising the

regulated firm’s cost of capital, and leading to inefficient investment. For example, Paul

Plummer, then Chief Economist at the Office of the Rail Regulator, argued in 2000 that

“A[n] . . . issue concerns Railtrack’s lack of a right of appeal to the Competition

Commission in relation to the periodic review. This makes it even more important

for the Regulator to adopt a consistent methodology and to explain the reasons

for his decisions. Even so, it could result in additional perceived regulatory risks.

Since this is unlikely to be in the long-term interests of funders, operators or

users of the railway, the Regulator has said that he would in principle support

the introduction of an appeal mechanism through the Transport Bill.” (Emphasis

in the original; see Plummer (2000))

Oftel has used the idea of regulatory risk to support its preferred method of regulation

for indirect access for mobile networks: in 1999, it argued that

“ . . . retail-minus . . . avoids a major change in the regulatory framework which

increases regulatory risk.” (See Oftel (1999).)

Finally, Ofgem has stated as an advantage of price cap regulation that

“[o]nce set, price caps create predictability, reduce regulatory risk during their

period of operation, and create incentives for suppliers to increase efficiency.

However, in dynamic retail markets Ofgem has tended to revise price controls

every one or two years, which seriously limits their usefulness in driving efficiency

and increases regulatory risk.” (See Ofgem (2002).)

By definition, regulatory risk exists if and only if it affects the regulated firm’s cost of

capital. The central message of asset pricing theory is that only factors that co-vary with the
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market portfolio (in the Capital Asset Pricing Model, or CAPM) or portfolios/factors (in an

Arbitrage Pricing Theory, or APT, model) in equilibrium affect a firm’s cost of capital. Hence

‘regulatory risk’ arises only when the regulator’s actions co-vary with the market portfolio(s).

Any regulatory action that has an effect that can be diversified does not contribute to risk.

This is simply a statement of the economic argument behind any asset pricing model,

such as the CAPM. It is worth dwelling on the point, however, since there is a considerable

amount of confusion on the point. For example, Ergas, Hornby, Little, and Small (2001),

in a submission to the Australian Competition and Consumer Commission (ACCC), argue

that

“Firm specific risk which does not contribute to the risk of the market portfolio

(i.e., which is not systematic) is not priced by the CAPM, even if it cannot be

mitigated by diversification” (section 5.1).

This concern is valid only if the return from investing in the regulated firm has zero

covariance with the returns of the market portfolio (i.e., non-systematic) and all other assets

(i.e., non-diversifiable). To make the point clear, consider a portfolio comprised of N assets,

each of which has a random return, denoted r̃i for the ith asset; let the portfolio weight of

the ith asset be ωi, where
∑N

i=1 ωi = 1. Then the variance of this portfolio is, from standard

calculations,

V P (N) =
N

∑

i=1

ω2
i Vi +

N
∑

i=1

∑

j 6=i

ωiωjCij

where Vi is the variance of the ith asset’s returns and Cij is the covariance of the ith and

jth assets’ returns. Note that there are N variance terms, but N(N − 1) covariance terms.

It is this fact that leads to the conclusion that only covariance with the market portfolio

matters to a well-diversified investor. If the assets and portfolio are symmetric, so that

Vi = Vj = V, i 6= j, Cij = Ckl = C, i 6= j, k 6= l, and ωi = 1/N ∀i, then the variance of the

N -asset portfolio is

V P (N) =

(

1

N

)

V +

(

N(N − 1)

N2

)

C;
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in the limit, as the number of assets in the portfolio becomes very large, the portfolio variance

approaches C more and more closely.

Consider adding an additional asset to the symmetric, N -asset portfolio just considered;

suppose that this extra asset has zero covariance with all other assets, and has variance equal

to V . Then the new portfolio’s variance would be

V P (N + 1) =

(

1

N + 1

)

V +

(

N(N − 1)

(N + 1)2

)

C.

Again, in the limit as the number of assets in the portfolio becomes very large, the variance

of this portfolio tends to C. In short: there is a negligible effect on a well-diversified investor

of investing in an asset with risk that is non-systematic and non-diversifiable.

This narrows the focus of the search for the meaning of regulatory risk to actions that do

not have diversifiable effects, but do have systematic effects. To be more explicit, regulatory

risk (in the sense that is of interest in this section) arises only when the regulator takes

actions that cause the returns of the regulated firm to co-vary with the returns on the market

portfolio(s). One example of this is when a regulator decreases a price cap in response to a

macro-economic shock that increases the profit of a firm. Is this example likely to occur in

practice? One good reason why it might relates to learning by the regulator. Suppose that

the regulator does not know the true marginal cost of a monopolist that it is regulating.

Suppose also that observation of the firm’s profit does not reveal perfectly to the regulator

the marginal cost (because, say, there is also uncertainty over the level of demand). As the

regulator observes the firm’s profit over time, it learns about the true marginal cost. Finally,

the regulator sets e.g., a price cap to limit the extent to which the firm can exercise its

market power. If the regulator could observe the firm’s marginal cost perfectly, it would set

the price cap equal to marginal cost; or, if there is a fixed cost to cover, to average cost. In

either case, the fully-informed price cap is low (high) for a low (high) cost firm.

Consider what happens when there is a positive macro-economic shock that increases

both the return on the market portfolio and demand for the regulated firm’s product. For

a given price cap, the effect of the shock is to increase the firm’s profit. As a result of

observing a higher profit, the regulator revises its beliefs about the firm’s marginal cost:

under any reasonable updating scheme, the regulator will attach a higher probability to the

121



firm’s marginal cost being low. In response to the positive shock, therefore, the regulator

will lower the price cap. As a consequence, the firm’s return may co-vary negatively with

the market.

This source of systematic regulatory risk is particularly acute when the regulator has a

large amount of discretion, in terms of both the frequency with which and the degree to

which the regulator can adjust the price cap. If the regulator can make large adjustments

very frequently to the price cap, then there is considerable systematic regulatory risk. If, on

the other hand, the regulator is constrained to make small changes infrequently to the price

cap, then there is little systematic regulatory risk from this source.

6.2. The Interaction of Systematic Risk and Regulation

Much attention has been paid to the effect of regulatory schemes on firms’ incentives toward

cost reduction and investment. Relatively little has been said about the impact of regulation

on a firm’s cost of capital. A major difference between the schemes outlined above is the

degree of risk to which they expose the regulated firm. For the sake of illustration, suppose

that a firm’s costs are, in part at least, uncertain; and that this cost risk is not diversifiable.

A firm faced with a price cap is exposed significantly to the risk: should its costs go up (for

reasons that it cannot control), it is unable to raise its price in response. A same, but less

acute situation obtains for a firm regulated by a revenue cap. It is able partially to alter its

prices should costs change, but is constrained by its revenue cap. A firm allowed full cost

pass-through, or facing rate-of-return regulation, faces no risk in this situation.

The different regulatory schemes therefore have markedly different implications for the

firm’s risk exposure. Two questions are key in the examination of this ‘regulatory risk’:

1. for any level of exogenous and non-diversifiable risk in demand and costs, what is

the effect of various regulatory schemes on the degree of (non-diversifiable) risk of a

regulated firm?

2. what is the effect of various regulatory schemes on the regulated firm’s choice of in-

vestment risk?
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The first question is discussed in section 6.2.1, the second in section 6.2.2. In both sections,

we use a model in which a monopolist is faced with systematic risk about its marginal cost

of production. The monopolist chooses its price after it knows its marginal cost; regulation

is set before cost is realized. In section 6.2.1, the monopolist’s project is given; we analyse

how the use of different forms of regulation (a strict price cap, and a price cap with varying

degrees of cost pass-through) affect the beta of a regulated firm. We argue that the likeliest

outcome is that regulation increases the firm’s beta. In section 6.2.2, the monopolist chooses

between different projects that are distinguished by the amount of systematic risk that they

entail. We show that price cap regulation leads the firm to opt a for project with lower

risk than it would in the absence of regulation. If a limited degree of cost pass-through is

permitted by the regulator, the same conclusion holds. Only if the firm is allowed to pass

through a sufficiently large degree of its costs will it choose a project with the same degree

of systematic risk as an unregulated firm. In section 6.2.1.2, we investigate if the conclusions

are altered when the firm faces demand, rather than cost, uncertainty.

At the outset of this discussion, we should emphasize that we are concerned only with

shocks to the firm’s environment that are correlated with returns on the market portfolio—

that is, we consider only the non-diversifiable risk that a firm faces. Prime examples for

the sources of such risk are macro-economic shocks that may hit a firm. For example,

cost risk may arise when the price of inputs, such as oil, vary with the macro-economic

environment. Alternatively, it may be that labour costs are correlated, through wealth and

general equilibrium effects, with the return on the market portfolio. Similarly, demand risk

can arise through wealth effects that relate the market return to the demand for the product

of a specific firm.

6.2.1. Regulation and Risk for a Given Project

6.2.1.1. Cost Uncertainty Consider first a monopolist facing a demand curve given by

D(p), describing the level of demand D(·) when it sets its price at p; the demand function

is assumed to have all the usual, convenient properties. The firm’s costs of production are

cD(·), where c ≥ 0 is a constant marginal cost; there are no fixed costs (this simplifying

assumption will be discussed and relaxed later). The firm’s cost of capital is denoted k; we
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suppose that the firm’s entire cost of production must be financed from equity, and so total

costs are (1 + k)cD(·).

Suppose first that the firm is regulated with a price cap that requires that the firm’s price

be no greater than p. There are then three cases, distinguished by two marginal cost levels

c and c:

• c ≥ c : the firm chooses not to operate;

• c > c ≥ c : the firm operates and the price cap binds;

• c < c : the firm operates and the price cap does not bind.

c is given by the price/marginal cost equality p ≡ (1 + k)c. c is given by profit-maximizing

price/price cap equality p∗(c) ≡ p. Note that in the first case, it need not be that the firm

ceases operation altogether: this could refer to an investment opportunity that the firm does

not undertake.

The regulated firm’s profit function πR(c) has, therefore, three components: for low

marginal cost (c < c), it is the same as the maximized profit function π∗(c) of an unregulated

firm; for intermediate cost (c > c ≥ c), it a linear function; and for high cost (c ≥ c), it is

zero:

πR(c) =















0 c ≥ c,

(p − (1 + k)c)D(p) c > c ≥ c,

π∗(c) c < c.

The unregulated firm’s profit maximization problem is maxp(p − (1 + k)c)D(p) ≡ π∗(c).

It is a standard result that π∗(c) is a convex function of c:

dπ∗(c)

dc
= −(1 + k)D(p∗(c)) < 0;

d2π∗(c)

dc2
= −(1 + k)D′(p∗(c))

dp∗(c)

dc
> 0.

(The first inequality follows from the envelope theorem; the second from the facts that

demand is downward sloping and that the profit-maximizing price is increasing in costs,

given the standard demand assumptions.) The functions π∗(c) (the solid line) and the
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Figure 6.1: The profit functions π∗(c) and πR(c)

regulated firm’s profit function πR(c) (the dotted line continuation) are shown in figure 6.1.

Now suppose that the marginal cost of the firm is uncertain: there is systematic risk

from, for example, input prices that co-vary with the market. Hence c is a random variable,

the value of which is realized before the firm chooses its price. The regulator, on the other

hand, sets the price cap p before marginal cost is known. We suppose (for clarity) that the

co-variance between marginal cost and the market portfolio return is −1, so that the beta

of the firm is measured by minus the co-variance of profit with marginal cost:

β∗ = −Cov [π∗(c), c] , βR = −Cov
[

πR(c), c
]

.

To allow explicit comparison of β∗ and βR, suppose that marginal cost can take one of

two values, cL < cH , where the low cost realization occurs with probability φ ∈ [0, 1] and
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the high cost realization with probability 1 − φ. Straightforward calculations give

β∗ = 2φ(1 − φ) (π∗(cL) − π∗(cH)) (cH − cL) ,

βR = 2φ(1 − φ)
(

πR(cL) − πR(cH)
)

(cH − cL) .

It is unlikely that the price cap p will be set so that it never binds i.e., so that cH < c.

It is also unlikely that the price cap will be set so that even the lowest cost firm does not

operate i.e., so that cL > c. With these two restrictions, the shape of the two profit functions

ensure that the beta of the regulated firm is greater than the beta of the unregulated firm

i.e., βR > β∗.

In practice, many firms (even those subject to price cap regulation) are allowed a degree

of cost pass-through; for example, the RPI - X formula that is widely-used in the U.K. allows

regulated prices to reflect general price inflation. This modification to price cap regulation

is justified theoretically by the analysis of Laffont and Tirole (1986) and Laffont and Tirole

(1993). Suppose, then, that the regulated firm’s prices are constrained by a price cap of the

form

p̂(c) = p + (1 − α)c

where α ∈ [0, 1] is the extent of cost pass-through: when α = 0, the regulated price p̂ reflects

fully realized cost, while when α = 1, no cost pass-through is permitted.

There are two possible cases. Figure 6.2 illustrates the price cap when α > (1 − k)/2

i.e., cost pass-through is sufficiently incomplete. The unregulated, profit-maximizing price

p∗(c) and marginal cost (1 + k)c are also drawn. The figure makes clear that in this case, as

before, there are two critical levels of marginal cost, c and c, that define regions in which the

price cap does not bind (when c < c), in which it does bind and the regulated firm is willing

to operate (c ≤ c ≤ c), and in which the regulated firm is not willing to operate (c > c).

When cost pass-through is incomplete, therefore, the regulated firm’s profit function is

similar to the case analysed previously and illustrated in figure 6.1. The quantitative features

of the profit function are changed by allowing cost pass-through; the qualitative features

(the level and curvature of regulated profits relative to maximized profits) are unaltered.
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Figure 6.2: Price cap with incomplete cost pass-through

Consequently, the conclusion that the regulated firm’s beta is greater than the unregulated

firm’s i.e., βR > β∗ continues to hold even when partial cost pass-through is allowed. But

the beta of the regulated firm is lower when partial cost pass-through is allowed.

If enough cost pass-through is allowed, however (α < (1− k)/2), then the price cap does

not bind, what ever the realized cost of the firm. In this case, the regulated firm’s profit is

clearly identical to the unregulated firm’s; hence regulation does not affect the firm’s beta.

This is quite intuitive: with sufficient cost pass-through permitted by the regulator, the firm

is never constrained by the price cap when choosing its price, whatever its marginal cost.

While the model that has been developed is specific in some of its details (for example,

the cost structure of the firm), the conclusions are quite general. For example, fixed costs

could quite easily be included without any major qualitative change in the conclusions.

6.2.1.2. Demand Uncertainty Consider a firm operating under a price cap (so that

its price p must be less than or equal to some level p) subject to demand shocks. Let the

demand that the firm faces when it charges price p be D(p; θ), where D(·) is decreasing in
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price, and θ is a random variable representing demand shocks. (This type of systematic risk

can arise when the demand for the firm’s product is driven by e.g., macro-economic shocks

to income.) To make the point as simply as possible, suppose that D(p; θ) = θ − p. Finally,

suppose that the firm has constant marginal cost of production and no fixed costs; without

further loss of generality, let the marginal cost be zero.

An unregulated monopolist chooses price to maximize profit i.e., maxp(p − c)(θ − p).

Straightforward calculations show that the monopoly price is p∗(θ) = θ/2 and profit is

π∗(θ) = θ2/4. Now consider the regulated firm. For low enough values of θ, θ ≤ 2p, the firm

can choose its price to maximize its profit without being constrained by the price cap. But

for larger values of θ > 2p, the price cap binds. Hence the profit of the regulated firm is

πR(θ; p) =

{

π∗(θ) θ ≤ 2p,

p(θ − p) θ > 2p.
(6.1)

Figure 6.3 plots the profit functions π∗(θ) (the solid line) and πR(θ; p) (the dotted continu-

ation) against the level of the demand shock parameter θ.
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The figure demonstrates the same basic relationship between the regulated and unregu-

lated profit functions as is observed when uncertainty originates from the cost side. In line

with the previous argument, suppose that the co-variance between total demand and the

market portfolio return is 1, so that the beta of the firm is measured by the co-variance

of profit with the demand shock. The shapes of the two profit functions then ensure that

the beta of the regulated firm is less than the beta of the unregulated firm. In the case of

demand shocks, in contrast to cost uncertainty, the regulated firm’s profit varies less than

the profit of the unregulated firm. That translates into a lower beta.

6.2.1.3. Summary The simple model developed in this section has lead us to important

conclusions:

• Price cap regulation affects the beta of the regulated firm.

• If uncertainty arises on the cost side, then price cap regulation increases the firm’s

beta. If uncertainty arises on the demand side, then price cap regulation decreases the

firm’s beta.

• Cost pass-through mitigates the effect of cost uncertainty. If sufficient cost pass-

through is allowed, then the beta of a regulated firm is equal to the beta of an unreg-

ulated firm.

The models that have been developed in this section also allow us to make quantitative

statements about situations under which price cap regulation will have a large effect on the

beta of a firm. For example, consider the first case in which the firm’s marginal cost is

uncertain. Let

∆β ≡ βR

β∗
=

πR(cL) − πR(cH)

π∗(cL) − π∗(cH)
.

Hence ∆β is one measure of the change in a firm’s beta effected by price cap regulation

(normalizing by the unregulated firm’s beta); it is greater than 1 in the cases of interest. In

order to analyse this measure in greater detail, suppose that demand is linear: D(p) = a−bp,
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where a, b > 0 are positive constants. Then

π∗(c) =
(a − b(1 + k)c)2

4b
.

When cL < c < cH < c,

∆β =
(a − b(1 + k)cL)2 − 4b (p − (1 + k)cH) (a − bp)

b2(1 + k)2 (c2
H − c2

L)
.

Most obviously, ∆β is decreasing in p: the more generous the price cap, the closer is the

regulated firm to its unregulated counterpart. ∆β is increasing in a, the vertical intercept of

the demand function. In words: the beta of a regulated firm operating in a large market (high

a) will be greater than the beta of a firm in a small market. ∆β is increasing (decreasing) in

b, the slope of the demand function, if p∗(cL) > (<)(1 + k)cH i.e., if the profit-maximizing

price of the unregulated firm is greater (less) than the marginal cost of the high cost firm.

Hence the beta of a regulated firm is non-monotonic in the value of the market: when the

value is low, the beta is decreasing; when the value is high, the beta is increasing. Other

comparative statics are similarly non-monotonic and determining the effects of an increase

in a parameter requires that the values of parameters be specified.

More generally, armed with estimates of the demand and cost structures of the industry,

and an estimate of the cost or demand uncertainty, this approach in principle allows the

effect of regulation on a regulated firm’s beta to be quantified.

6.2.2. Regulation and Project Choice

In this section, we consider what happens when the firm is able to choose its project. In

order to shorten the exposition, we deal only with the case of marginal cost uncertainty;

the case of demand uncertainty follows similar lines, as we will explain at the end of the

discussion.

6.2.2.1. The Unregulated Firm As in section 6.2.1, we consider a monopolist facing

a demand curve D(p), with a constant marginal cost c, no fixed costs, and a cost of capital
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of k. We now suppose that the firm has two choices to make. First, it decides which

project to undertake. Projects are distinguished by their degree of systematic cost risk.

Different projects have different probability distributions of marginal costs. We assume that

all projects have the same expected marginal cost, but have different degrees of risk. Projects

are, therefore, distinguished by mean-preserving spreads: let the distribution functions of

marginal production costs for projects 1 and 2 be F1(c) and F2(c); then, for example,

∫ ∞

0

cdF1(c) =

∫ ∞

0

cdF2(c);

∫ y

0

dF1(c) ≥
∫ y

0

dF2(c), y ≥ 0.

In fact, to simplify matters, we will assume that each project has two possible cost real-

izations, cL < cH , where the low cost realization occurs with probability φ ∈ [0, 1] and

the high cost realization with probability 1 − φ. To ensure that each project has the

same expected cost, we assume that cL = φ and cH = 1 + φ, so that the expected cost

is ĉ = φcL + (1 − φ)cH = 1. The projects are distinguished, then, by their value of φ. Note

that the projects with φ = 0 or 1 are the least risky—they give a certain marginal cost

of ĉ = 1. The beta of these projects is zero; the rate of return required from them is the

risk-free rate Rf . Other projects are more risky i.e., have higher betas, but may have lower

realized marginal cost; the riskiest has φ = 1/2.

The second choice that the firm makes is to choose price to maximize profit. We assume

that price is chosen after the project’s marginal cost is realized. Hence the timing is

1. The firm chooses its project.

2. The project’s marginal cost is realized.

3. The firm chooses its price.

The firm’s maximized profit is therefore π∗(c); see section 6.2.1 and figure 6.1.

The implication of convexity of the profit function is that, all other things equal, the

firm will want to choose the riskiest possible project (i.e., the one with φ = 1/2) in the

prior stage. (This is a consequence of Jensen’s inequality.) We suppose, however, that the
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Figure 6.4: The cost of capital function k(φ)

capital market can observe the firm’s project choice; and that the firm’s cost of capital k

is a function of the project’s risk, measured by φ. The cost of capital is a non-monotonic

function of φ, reaching a maximum at φ = 1/2 (the highest risk), and equalling the risk-free

rate when φ ∈ {0, 1}. This assumption is illustrated in figure 6.4.

The firm chooses the project i.e., φ to maximize expected profit:

max
φ∈[0,1]

�
[π∗ ] ≡ φπ∗(φ; k(φ)) + (1 − φ)π∗(1 + φ; k(φ))

where we have emphasized that k(·) is a function of φ. The first-order condition for an

interior optimum φ∗ is

∂
�
[π∗ ]

∂φ
= −∂

�
[π∗ ]

∂k

dk(φ)

dφ
.

The left-hand side is positive because the profit function π∗ is convex in cost. The right-hand

side is positive in a region in which dk/dφ is positive (since expected profit is decreasing in

the cost of capital). This equality shows how the firm balances at the margin the increase
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Figure 6.5: The unregulated firm’s project choice φ∗

in expected profit from choosing a riskier project with the expected increase in the cost of

capital from doing so. The trade-off is illustrated in figure 6.5.

6.2.2.2. The Firm Regulated by a Price Cap Now suppose that the firm is regulated

with a price cap that requires that the firm’s price be no greater than p. See section 6.2.1

and figure 6.1 for the regulated firm’s profit function πR(c). The firm’s expected profit
�
[πR ]

equals φπR(cL) + (1 − φ)πR(cH). The regulated firm’s profit-maximizing choice of project

(assuming an interior solution) is given by

∂
�
[πR ]

∂φ
= −∂

�
[πR ]

∂k

dk(φ)

dφ
.

Since the price cap changes the curvature of the firm’s profit function (see figure 6.1), it

therefore changes the firm’s choice of project, denoted φR. The price cap prevents the firm

from raising its price to the profit-maximizing level if the realized cost is high. This means

that the regulated firm gains less from a marginal increase in project risk (holding the cost
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Figure 6.6: The regulated firm’s project choice φR

of capital constant) than does the unregulated firm. It also means that the regulated firm’s

realized, and hence expected, profit falls by more than the unregulated firm’s when the cost

of capital increases. More explicitly,

∂
�
[π∗ ]

∂φ
≥ ∂

�
[πR ]

∂φ
,

−∂
�
[π∗ ]

∂k
≤ −∂

�
[πR ]

∂k
.

These two facts combined mean that φR < φ∗ < 1/2: the regulated firm chooses a lower risk

project than the unregulated firm. This is illustrated in figure 6.6.

6.2.2.3. The Firm Regulated with Cost Pass-through In section 6.2.2.2, we sup-

posed that regulation takes the form of a strict price cap. Suppose instead that cost pass-

through is allowed, so that the price cap takes the form

p̂(c) = p + (1 − α)c
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where α ∈ [0, 1] is the extent of cost pass-through.

The analysis in section 6.2.1 can be repeated, and the same two conclusions hold. When

cost pass-through is incomplete (α > (1−k)/2), the regulated firm’s profit function is similar

to the case analysed in section 6.2.2.2 and illustrated in figure 6.1. The quantitative features

of the profit function are changed by allowing cost pass-through; the qualitative features

(the level and curvature of regulated profits relative to maximized profits) are unaltered.

Consequently, the previous conclusions continue to hold even when partial cost pass-through

is allowed. If enough cost pass-through is allowed (α < (1 − k)/2), then the price cap does

not bind, what ever the realized cost of the firm. Regulation does not affect the firm’s choice

of risk.

6.2.2.4. Summary In this section analysing the regulated firm’s choice of project, we

have dealt only with the case of cost uncertainty. In this case, we have found that a firm

regulated with a price cap will choose lower beta projects; and that cost pass-through mit-

igates this effect. There is an equivalent conclusion for the case of demand uncertainty—a

firm regulated with a price cap will choose higher beta projects.

6.3. Conclusions

We have demonstrated that price cap regulation changes the beta of a regulated firm when

it is unable to choose its project. If uncertainty occurs on the cost side of a firm, then

price cap regulation increases the firm’s beta; if there is demand uncertainty, the regulation

decreases the beta. Two things mitigate these effects. First, when the firm cannot choose

its projects, an element of cost pass-through makes the effect of regulation less marked in

the case of cost uncertainty. Secondly, when the firm is able to choose its project, and

hence effectively the amount of uncertainty that it faces, its choice tends to reverse the effect

of price cap regulation on its beta. These facts are all due to the change in shape of the

firm’s profit function that results from price cap regulation. While the arguments have been

developed in simple settings (for example, the way in which different projects are modelled),

the conclusions are, we believe, robust to a number of extensions.
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The effects of regulation on a firm’s beta therefore push in opposite directions, in the case

of both cost and demand uncertainty. Which effect dominates? The answer to that question

may depend on the time-scale. In the case of cost uncertainty, in the short-run, when the firm

is unable to change its project, price cap regulation (provided cost pass-through is partial)

increases the beta of the firm . In the medium- to long-run, the firm is able to choose its

project; and so long-run betas should be lower then short-run betas. The converse holds for

demand uncertainty—long-run betas should be higher than short-run betas.
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