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1 Introduction

This document describes some issues with the current approach to estimating
the CAPM beta as a method to calculate appropriate discount rates to use to
value risky investments and suggests a way forward through the use of multi-
variate modelling. We take the use of the single factor (beta) CAPM as the
correct model and explore statistical issues around the estimation of beta. The
existing approach typically uses rolling least squares estimation over some win-
dow to produce a current estimate of beta which is then treated as the estimate
of beta going forward. Whilst this procedure is computationally straightforward
it raises a number of statistical and conceptual issues. In particular the impor-
tance of developing models that account for time variation in both variances
and covariances of asset returns, and the requirement for an estimate of beta
that is suitable for an investment horizon that may stretch to several years. We
argue that if data is to be used to inform decision making then this has to be
done in a way which respects the statistical framework.

2 Background

The standard economic approach to modelling the required expected return
on an asset is via the Capital Asset Pricing Model (CAPM) which captures the
relationship between risk and expected return in the pricing of risky investments.
The CAPM states that for an asset i the expected return E (Ri) over some
horizon should satisfy

E (Ri)−Rf = βi (E (RM )−Rf ) (1)

where Rf is the risk free rate over the same horizon, RM is the corresponding

market return and βi = Covariance(Ri,RM )
V ariance(RM ) is the (market) beta of asset i. RM is

usually taken as the return on a broad index of assets and Rf usually proxied by
return on Govt discount bills. One can interpret the CAPM as measuring the
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required return on an asset as depending on the amount of risk that asset holds,
given by βi, times the market price of holding risk, given by the expected market
excess return (E (RM )−Rf ). The CAPM captures the idea that expected
(excess) returns are lower for assets where their actual returns covary less with
the market (excess return). We accept a lower expected return on these assets
because when market returns drop the individual asset return does not drop so
much.

We can rewrite the CAPM in terms of actual returns as

Ri −Rf = βi (RM −Rf ) + εi

where ε captures the di�erences between expected returns and actual returns.
This now looks like a regression equation (with zero intercept). The excess re-
turn on any asset has two components. One is a linear function of the excess
return on the market, this is usually called the non-diversi�able or systematic
risk and holding this risk is what requires compensation in the market. The
other is a random component which is usually called non-systematic or diversi-
�able risk.

Ri −Rf = αi︸︷︷︸
zero

+ βi (RM −Rf )︸ ︷︷ ︸
nondiversi�able

+ εi︸︷︷︸
idiosyncratic

In a time series context we de�ne at time t the returns Rit = E (Rit)+ηit and
RMt = E (RMt) + ξMt where ηit and ξMt are then random variables capturing
the di�erence of outcomes from expectations. Under rational expectations these
will be zero mean conditional on the information set available. Then we have
the following relation between the observed returnsRit and RMt (we include a
constant which the CAPM implies should be zero).

Rit −Rft = αi + βi (RMt −Rft) + ηit − βiξit (2)

= αi + βi (RMt −Rft) + uit (3)

In practical terms one wishes to obtain estimates of the unknown parameter
βi. The long established technique is to note that if we have a time series t =
1, . . . , T of observations on Rit and RMt (or on the excess returns) then we can
write a regression equation

Rit = ai + biRMt + vit (4)

the least squares estimator of b is given mechanically by

b̂i =
̂Cov (Ri, RM )̂V ar (RM )

=
ΣTt=1

(
Rit − R̄i

) (
RMt − R̄M

)
ΣTt=1

(
RMt − R̄M

)2 (5)

wherê denotes sample estimates and R̄i = 1
T ΣTt=1Rit and R̄M = 1

T ΣTt=1RMt are

the sample averages. Since the least squares formula for b̂i in (4) coincides with
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the formula for βi in (1) we can use b̂i obtained from a simple OLS regression as
an estimator of βi and this can easily be implemented in any standard statistical
software.

If the sample averages ̂Cov (Ri, RM ) and ̂V ar (RM ) tend to their true values
as the sample size grows then this estimator will have desirable properties.
On daily data it is usual to assume Rft = 0 and in estimation we usually
�nd essentially no di�erence between the estimates including or excluding the
constant.

This motivates the use of ordinary least squares to estimate beta. Note that
although the theoretical relationship (2) looks a little like a regression equa-
tion it is actually derived from the CAPM relationship (1) which itself follows
from assumptions about utility maximisation, law of one price, no arbitrage
and other conditions. The expression for βi comes out of these assumptions.
The regression equation (4) is then simply a mechanism to estimate βi. This
di�erence is important because there is nothing in (1) that prevents βi from
changing over time whereas an implicit assumption in the use of (4) is that the
regression coe�cient does not change over time. Most empirical applications
of this methodology use a rolling sample period of T observations presumably
re�ecting an underlying belief that βi is in fact changing in some way over time.
The issue to be addressed is whether least squares estimation of (4) can be
expected to deliver reasonable estimates of the parameter of interest in (1), in
particular in a situation where there may be time variation in βi.

2.1 Some modelling issues

In estimating beta there are certain issues we have to consider

• the assumptions we are prepared to make about beta

• the purpose for which we wish to estimate beta (in particular, if we wish
to forecast β, the horizon over which we may need estimates)

• the nature of the data available in particular the frequency and time in-
terval over which estimation can take place

It is important to recognise that these issues cannot be separated. Given a
set of assumptions the appropriateness of a particular modelling strategy can
then be evaluated. For example if we assume that beta is a constant then the
best strategy is probably to use OLS estimation on all the data available. Low
frequency data reduces the number of observations used and may also require
some consideration of the risk free rate that appears in the CAPM (both in esti-
mation and in predicting future returns). Higher frequency data provides more
precision in estimation and the usual assumption of a zero risk free rate is also
more defensible. But if one moves to even higher frequency such as intra-daily
data then market microstructure issues (for example non-synchronous trading
times or bid-ask spreads) may become an important modelling concern. Finally
if beta is indeed a constant then whether we are interested in short horizon
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forecasts or forecasting beta over longer horizons in this framework the same
estimate should be used.

If beta is time varying then estimation can still be done by OLS but other
techniques may be more appropriate depending (partly) on the reasons for which
we wish to estimate beta and the way in which beta varies. We may be inter-
ested in short horizon (conditional) E (βt+h | Ωt) where h may be a few days
or weeks and Ωt represents the information set available at time t. Or we may
be interested in much longer run (unconditional) E (β) or indeed something in
between. The appropriate modelling strategy in the �rst case may not be the
same as in the second. In particular to forecast over longer horizons it will be
usually be necessary to specify some model for the time evolution of beta. It
is important to see in forecasting some model of the time evolution of beta is
always assumed. For example if we have a current estimate of β̂t and use this
to forecast forward βt+h we are implicitly assuming E (βt+h | Ωt) = βt for all h.

If beta varies only slowly (relative to the data sampling frequency) then beta
in the immediate future may be well approximated by the current estimate, in
which case OLS on the most recent data may still be the most useful strategy
and this is very much the standard approach where a recent window (of say �ve
years of monthly data) is used to obtain a current estimate of beta. But this
current estimate may be a poor guide if beta reverts to some longer run level
from its current levels and we are interested in longer horizons.

For example if we assume that βt evolves as an AR1 around some long run
level β∗ we might write a simple AR1 model

(βt − β∗) = λ (βt−1 − β∗) + ηt

and if we wish an estimate of the average β over the next h periods. Then it is
easy to show

β̃t,t+h = (1− θh)β∗ + θhβ̂t

where β̃t,t+h is the average expected β over the period t → t + h (so β̃t,t+h =

1
h

∑h
τ=1E (βt+τ | βt)) and θh =

λ(1−λh)
h(1−λ) . The forecast average over the period

is thus a weighted average of current the estimate of βt and the long run (equi-
librium) value β∗ (which again we may have to estimate). Note as well one
implication is that if we estimate or require beta over quarterly data we have
roughly 66 days daily beta. Some sort of mean reverting behaviour in the process
for βt could make the former estimate quite di�erent from the latter.

3 OLS estimation

Given a time series of observations Ri,t and RM,t over an interval t = 1, . . . , T
the least squares estimator is given by

b̂i =
ΣTt=1

(
Rit − R̄i

) (
RMt − R̄M

)
ΣTt=1

(
RMt − R̄M

)2
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If the underlying population parameters (ie Cov (Ri, RM )and V ar (RM )) are
constant then under fairly mild conditions the sample estimates will converge to
their population values in probability and so we can expect b̂i to give consistent
estimation of βi. If this is the belief then the appropriate estimation strategy
should be to use all available observations on Ri and RM to obtain the most
precise estimates of Cov (Ri, RM )and V ar (RM ) and the estimate of βi simply
can be obtained from a regression of Ri on RM over the full sample. This can
then be used whether we require an estimate of beta for short or long horizon
forecasts.

There is a very large literature using the simple OLS approach to estimation
of beta originating with the work of Fama-Macbeth. In most of this literature
there is at least an implicit acknowledgment that beta for individual stocks may
vary over time. Much of the discussion focusses on the choice of sample period
and observation frequency within that window (and the trade o�s between these
two), for example for a monthly forecast of beta one might use the previous �ve
years of monthly data in estimation). If beta is believed to vary only slowly
over the estimation interval and the requirement is for an estimate of beta over
a comparable short future horizon this approach has much to recommend it.

3.1 What if beta varies over time?

It seems almost universally accepted that beta varies over time (and this is
the usual justi�cation for truncating the observation window for estimation).
The hope presumably is that if Cov (Ri, RM )and V ar (RM ) are approximately
constant over some interval t = 1, . . . , T (at levels σiM and σ2

M , say) then the
least squares estimator in a regression of Ri,t on RM,t will be approximately

σiM

σ2
M

over that interval and this may provide a suitable estimate for βi for subsequent
use. That is, the average value of beta over the recent past can be used to
estimate the expected value of beta over some comparable future interval.

In this context the following questions arise:

1. Is there evidence that beta changes over time?

2. If so does this invalidate OLS as an estimation method?

3. If so what other estimation procedures might be available and what ad-
vantages might they have?

We address each in turn.

3.1.1 Is there evidence that beta changes over time?

Figure 1 below shows estimates of beta from a rolling OLS of window size approx
two years using daily data for SVT,NG and UU with ASX as the market proxy
- these are 500 days ahead rolling regressions over the period 5 January 2000 to
10 Sep 2015 with the �nal 500 obs running to 31 Aug 2017.
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Figure 1: Rolling (daily) beta estimates for utilities

For comparison here's the monthly (using 60 month ie 5yr ahead rolling
window again ending Aug 2017)
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Figure 2: Rolling (monthly) β estimates for utilities

Were beta strictly constant then we should obtain quantitatively similar
estimates from daily data and from monthly data. The estimation interval
would not make a substantive di�erence and we should observe little beyond
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random variation in the rolling estimates around the true (constant) value of
βi for each company, whatever the estimation frequency. This is di�cult to
reconcile with the Figures. Indeed we see large short term �uctuations where
the addition of a single day or a month can generate substantial movement in
the estimated β, and possibly a more longer term lower frequency variation.

Since βi = Cov(Ri,RM )
V ar(RM ) time variation in β can only occur if Cov (Ri, RM )

and/or V ar (RM ) vary over time. We can get a proxy for V ar (RM ) at daily
frequency by graphing the squares of the daily return as below. Under ho-
moscedasticity each of these would be an unbiased estimate of the (constant)
variance of returns (ie we should see a more or less horizontal line).
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Figure 3: Squared daily stock market returns

The visual impression of time variation is con�rmed by a statistical test (a
test for no relation between variance at time t and the previous 20 values has
χ2
20 = 1100.8 which has a p-value around 1.8×10−220). With such overwhelming

evidence of time variation in V ar (RM ) the only way to obtain constant βi would
be if Cov (Ri, RM ) had time variation that precisely mimics that of V ar (RM ).
This seems unlikely.

Squared returns for Severn Trent, National Grid and United Utilities are
graphed below. Again test for homoscedasticity is overwhelmingly rejected in
each case (χ2

20 = 410, 712 and 940 respectively)
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Figure 4: Squared daily returns for utilities

With such evidence of persistent time variation in the variances of these series
it is extremely di�cult to argue that β should be treated as a constant, except
perhaps in the very short run. To make this argument would require that beta is
allowed to be time varying but in such a way that it varies only very slowly over
the estimation window, so that forecasting using this value over a similar window
is a reasonable approximation - that is if beta is approximately constant at
monthly intervals then one might try to use a history of monthly observations to
forecast one or two months ahead. The problem of course is to obtain a su�cient
history of data for estimation would then require using several years of monthly
data where the assumption of only slow variation might be di�cult to defend.
The alternative approach of estimating on a relatively shorter interval of, say,
daily data and using this estimate to project beta forward over say a one month
horizon is likely to be preferable and this seems to be the main justi�cation
for the current approach in �nancial econometrics. However if one wishes to
produce beta estimates for horizons further than days or even months the issue
of time variation in the future as well as the past has to be acknowledged.
One interesting feature of Figures 1 and 2 is that there appears to be high
frequency movements (in beta) that are averaged out in the monthly regressions.
This is at least suggestive of time variation in beta driven by a combination of
temporary and more persistent shocks. The component GARCH model of Engle
and Lee (1999) is one approach that tries to capture this short and longer horizon
decay of shocks and provides more �exible speci�cation than the GARCH(1,1)
models described below though at the cost of some computational complexity
(the component GARCH is a restricted GARCH(2,2)).

3.1.2 Does this invalidate OLS as an estimation method?

If we accept that βi is time varying the immediate question is what precisely
the OLS estimator in the CAPM regression then measures (note that there is
nothing to stop us performing such a regression). Let Ri,t+1 be the one period
conditional return on asset i from t to t+1 and RM,t+1 the corresponding excess
market return.

Express the time varying CAPM as (this follows Bollerslev and Zhang, 2003)

Ri,t+1 = αt+1|t + βi,t+1|tRM,t+1 + ηi,t+1 t = 0, 1, . . . , T − 1 (6)
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where αt+1|t is the conditional expected return on a zero beta portfolio and
ηi,t+1 is zero mean but may be conditionally heteroscedastic.

βi,t+1|t =
Covt (Ri,t+1, RM,t+1)

V art (RM,t+1)
(7)

where now variances and covariances are all conditional on information at time
t (and written with subscript t). These conditional betas are, of course, not
observed and since we only have a single realisation of the joint time series
(Ri,t, RM,t)

′
estimation of such time varying moments requires further assump-

tions.

OLS estimation

If we just run OLS on the T observations at this sampling interval we obtain
the estimate

b̂i =
ΣT−1t=0

(
Ri,t+1 − R̄i

) (
RM,t+1 − R̄M

)
ΣT−1t=0

(
RM,t+1 − R̄M

)2 (8)

and a simple procedure is to use this as the estimate of beta over the next time
interval. For example a standard approach might be to use 3 or 5 years of
monthly data to estimate (8) and use this value as the one month ahead β esti-
mate (and then roll the estimation forward). This is the original Fama-MacBeth
approach which treats βi,t+1|t as a constant in the least squares objective func-
tion and chooses an estimation window that is hopefully consistent with that
assumption. If this estimate of beta is then used to calibrate future returns
then this locally constant assumption has to hold over the future period as well.
This is di�cult to maintain if the forecast horizon runs to years. If the locally
constant assumption is violated then the time variation becomes part of the er-
ror structure leading to heteroscedasticity and omitted variable type problems
(though in order to assess any bias one also has to specify what the true beta
is and consequently decide whether it is actually �xed or time varying).

The exact properties of these rolling OLS regressions when the slope coe�-
cient (and intercept) may be time varying are di�cult to calculate and depend
on the nature of the joint stochastic process determining the evolution of the
conditional market betas and the conditional market risk premium. If the con-
ditional beta on a particular day is equal to some underlying mean value plus a
purely random variation for each day then we would have e�ectively a random
coe�cient model at daily frequency and OLS will provide unbiased estimates
of the mean beta over the sample interval (though this estimate would not be
e�cient if there is heteroscedasticity). But if the covariance between the con-
ditional β and conditional market return were not zero OLS would not even be
unbiased (for the mean beta) in such a model.

Since one can in principle sample at even higher frequency than daily the
questions arises over what time interval it might be possible to regard beta as
locally constant. In the limit one would have to consider a model where beta
evolves continuously in time. This then gives rise to the realised beta approach.
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Realised beta

We can make the assumption that returns actually evolve in continuous time
but can only be observed at discrete intervals (such as daily, weekly, monthly
or quarterly). The process generating the returns will have underlying variance
and covariances that are continuous (and possibly time varying) processes. By
implication there is also a beta that evolves continuously in time. The realisa-
tion of the returns, variances and covariances at the observed frequency will be
given by cumulating the returns variances and covariances from the underlying
continuous time processes.

In these circumstances an alternative approach is to use the realised beta
methodology. To estimate say the variance of a return in a particular quarter we
recognise that this can be approximated by the cumulated variances of minute-
by-minute or even second-by second returns with the approximation improving
the higher the frequency we can sample the data within that quarter. As the
sampling frequency increases in the limit we obtain the realised variance measure
of Barndor�-Neilsen and Shephard (2002) (see Anderson Bollerslev Diebold and
Wu (2006) for discussion). This can also be done to construct realised covariance
and hence we can obtain realised beta at say quarterly frequency using higher
frequency such as daily (or even intra-daily though remember the caveats above)
data.

That is to obtain a direct estimate of βi,t+1|twhere t → t + 1 is say one
quarter we use the higher frequency (such as daily) data within the sampling
period t → t + 1. If we label higher frequency returns Ri,tj and RM,tj for
j = 1, . . . , N during a period t (so j represents for example days within a
month) then an estimate of the time t conditional beta is obtained as the ratio
of the realised covariance and realised volatility

β̂i,t+1|t =

∑N
j=1Ri,tjRM,tj∑N
j=1R

2
M,tj

which is simply obtained by a regression at the higher frequency within period
t of asset returns on market returns. This formulation allows for continuous
evolution of the underlying parameter and produces a consistent estimate of the
underlying ratio between the integrated stock and market return covariance and
the integrated stock market variance over the sampling period.

Having obtained these realised beta estimates Bollerslev and Zhang suggest
two ways of using them to estimate future beta, �rstly by just holding the
current estimate forward, and secondly by producing a time series of estimates
of conditional betas at the lower frequency and then using a rolling window
to produce (say) AR1 forecasts of the future beta by simply estimating an
autoregression for the time series of realised betas.

In principle this realised β method could be used to produce estimates at
much greater horizons. If one speci�es a sampling period of say 500 observations
(two years) then the OLS estimates within that interval provide an estimate of
the current 500 day conditional β. This could be projected forward at its current
level (imposing a random walk model on future beta) as the forecast beta. Or
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one could specify some model such as an AR1 for the conditional beta. However
even with a total of 16 years of data there are only 8 non-overlapping two year
blocks of daily data on which to calculate conditional betas. To estimate an
AR1 model on so few observations and project forward for �ve or even ten years
is likely to introduce substantial noise given known problems with small sample
autoregressive estimation. A strategy of reducing the sampling frequency for
the CAPM to say quarterly and then use the daily data to produce conditional
beta estimates at this frequency would allow a longer time series (of estimated
conditional betas) for estimating a forecasting model at the cost of fewer daily
observations being used to estimate each conditional beta. Bollerslev and Zhang
report some evidence in favour of this high frequency plus AR approach to
forecasting β at least at short forecast horizons. This methodology blends a
non-parametric approach to estimating the conditional betas with a parametric
forecasting model. Note also that a simple OLS over the full sample can be
interpreted as a measure of the realised beta over that interval. Section 9 below
gives some estimates.

3.1.3 What alternative estimation procedures might be appropriate?

If beta is time varying then OLS might still be used as discussed above. An
alternative approach is to make parametric assumptions about the time evo-
lution of either βi,t or of the underlying variance and covariances at say daily
frequency. There is a long established literature in econometrics for modelling
time variation of second moments of �nancial time series through models of
conditional heteroscedasticity. For estimating beta the implication would be
that we specify (and estimate) some model that allows the (conditional) distri-
bution of the random vector (Ri, RM ) to evolve over time. As time evolves the
joint distribution then implies a new value for βi,t. We discuss these models of
autoregressive conditional heteroscedasticity (ARCH) below in Section 4.

3.2 Summary

Least squares estimation of the CAPM model raises some issues

• The CAPM is not a Classical Linear Regression so there is no presumption
that OLS has e�ciency properties

• If beta is time varying then a linear regression assuming constant coe�-
cient is misspeci�ed and the model will display heteroscedasticity

• If beta is time varying then LS will attempt to estimate some average
beta over the estimation window. Whilst this might be appropriate for
portfolio analysis over short horizons, especially if beta is relatively slowly
varying, if we are interested in longer run estimates of beta this requires
some model of how βt evolves.

We start by revisiting univariate models with conditional heteroscedasticity.
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4 Time series models incorporating heteroscedas-

ticity: ARCH Models

For a long time econometricians working particularly with �nancial data have
been aware that the data displays time varying heteroscedasticity and that this
should be taken into account in developing models to describe this data. One
feature of the heteroscedasticity is that there appear to be clusters of volatil-
ity evident in the data, that is an increase in volatility in period t seems to
be accompanied by an increase in volatility in period t + 1, t + 2, . . . with a
gradual reversion towards a base level before a further shock starts this process
again. This observation led researchers to propose models where the volatility
in any period t might be linked to the shock in period t − 1. A type of model
that captures such variation is the autoregressive conditional heteroscedasticity
(ARCH) model �rst proposed by Engle (1982) and its descendants

Consider a univariate time series (such as an asset return)

yt = α+ εt

where V (εt | Ωt−1) = ht is the (conditional) variance of the process and Ωt−1
the information available at time t− 1.

Then the autoregressive conditional heteroscedastic model of order 1 (ARCH(1))
is de�ned by

ht = a0 + a1ε
2
t−1

Here a high shock in period t − 1 (ie a large realisation of εt−1) raises the
variance of the shock process in period t. Note that if we de�ne the surprise in
the squared shocks as

vt = ε2t − E(ε2t | Ωt−1) = ε2t −
(
a0 + a1ε

2
t−1
)

so we can write
ε2t = a0 + a1ε

2
t−1 + vt

so the variance of the innovation follows an AR1 process (hence the name
ARCH).

Now the unconditional mean of yt is α, and its unconditional variance is
a0/(1− a1) > 0 provided a1 < 1. The unconditional distribution is not normal
even if εt ∼ N(0, ht). Engle shows that the kurtosis is 3(1−a21)/(1−3a21) which
exceeds three for positive a1, so that the distribution of yt has fatter tails than
the normal (a feature often found for high frequency �nancial data).

Higher order ARCH models are de�ned by

V (εt | Ωt−1) = ht = a0 + a1ε
2
t−1 + a2ε

2
t−2 + ...+ apε

2
t−p

giving the pth order model denoted ARCH(p).
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4.1 Testing for ARCH

It is relatively straightforward to test whether the residuals from a regression
display time varying heteroscedasticity without actually having to estimate the
ARCH speci�cation. The squared residuals from an OLS regression are re-
gressed on p of their own lagged values ie

e2t = a0 + a1e
2
t−1 + ...+ ape

2
t−p + vt

and T times the R2 from this regression is a χ2 with p degrees of freedom under
the null that εt is i.i.d. N(0, σ2). The test is routinely implemented by most
time series regression packages. This is the test reported above.

4.2 Estimation of ARCH models

If ARCH e�ects are detected then estimation proceeds by maximum likelihood.
If we assume the εt are normally distributed then the conditional distribution
of yt is normal with mean α and variance ht. The log-likelihood can easily be
derived and maximised numerically. One usually needs quite high frequency
data (e.g. daily) to be able to identify ARCH e�ects well.

Of course there is nothing to restrict us to Gaussian distributions. In fact
even though ARCH models with Gaussian errors have fatter tails than the
normal, many (particularly �nancial) series that one might wish to consider
seem to have even fatter tails. One common assumption is that εt has a t-
distribution with ν degrees of freedom with ν a parameter that then enters the
likelihood function and is estimated along with everything else - this will tend
to generate even more kurtosis in the distribution of the ARCH variable and
(the hope would be) a better �t to the data. One could easily make further
distributional assumptions.

4.3 Extensions

A large number of extensions to the basic ARCH model have been proposed,
and many can easily be implemented in standard regression packages.

4.3.1 GARCH

Perhaps the most widely used extension is to the generalised form of ARCH
given by the following equation

ht = a0 + a1ε
2
t−1 + a2ε

2
t−2 + ...+ apε

2
t−p +

β1ht−1 + β2ht−2 + ...+ βrht−r

giving a GARCH(r, p) model. This allows for greater serial dependence in
the variance term. Estimation is by maximum likelihood, though it is some-
what complicated by the need to deal with presample values of the ht. Note
GARCH(0, p) is ARCH(p). In many �nancial applications the standard model
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overwhelmingly used by practitioners is the GARCH(1,1) model which is seen
to capture many of the features of high frequency returns. Much research has
been devoted to models that (it is argued) better capture the heteroscedastic-
ity in the data, for example the class of exponential-GARCH models capture
asymmetries in the e�ect of shocks on the volatility. But for the purposes of
modelling joint distributions the degree of tractability o�ered by plain GARCH
models is attractive.

4.4 Multivariate GARCH

In our setting we wish to model both the return on asset i, Ri, and the market
return RM . Both series display time varying heteroscedasticity so we specify a
joint process as

RM,t = αM + uM,t

Ri,t = αi + ui,t

so

E

[(
RM,t

Ri,t

)
| Ωt−1

]
=

(
αM
αi

)
V ar

[(
RM,t

Ri,t

)
| Ωt−1

]
= V ar

[(
uM,t

ui,t

)
| Ωt−1

]
=

(
σ2
11,t σ12,t
σ21,t σ2

22,t

)
(9)

with a short run (conditional)β then given as

βi,t =
σ12,t
σ2
11,t

We then model the joint distribution in (9) directly by specifying an ARCH or
GARCH model for the second moments. Once we have the parameters of that
distribution we can infer βi,t directly. This avoids the problems discussed above
of estimating β from a regression where the time varying nature of β means both
that there is unmodelled heteroscedasticity and that the least squares assump-
tion of constant coe�cients is violated. Instead we model the heteroscedasticity
in the variances and covariances directly and calculate β from the implied es-
timates. By specifying GARCH models for σ2

11,t, σ
2
22,t and σ12,t we capture a

structure where there can be short run (transitory) movements in βi,t around
some longer run equilibrium value, that is a large shock to returns in the current
period changes the conditional variance and covariance of returns in the next
period. This causes β to change in the short run and also a�ects the probabil-
ity distribution of shocks next period, and the realisation then transmits this
heteroscedasticity forward. We observe clusters of increased volatility revert-
ing to some longer run value before another shock sets o� the process again.
The sequence of β's, implied by this structure will display possibly persistent
movements about some longer run average value.

A variety of di�erent speci�cations have been proposed for the conditional
variance process. Two practical di�culties with these models are �rst to ensure
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positive de�niteness of the conditional covariance matrix and also the number of
parameters can easily grow very large indeed causing computational issues. The
BEKK (Baba, Engle, Kraft and Kroner (1990) published as Engle and Kroner
(1995)) provides a simple tractable model that ensures positive de�niteness of
the covariance matrix. Alternatives would be the constant conditional correla-
tion model of Bollerslev (1990). Here the conditional correlation is assumed to
be constant while the conditional variances are varying. Obviously, this assump-
tion is impractical for real �nancial time series. Finally there is the Dynamic
Conditional Correlation (DCC) model proposed by Engle (2002) which reduces
the number of parameters relative to a BEKK model via further restrictions.
If we are modelling only the joint distribution of two returns the number of
parameters problem is eased relative to say modelling a large cross section of
assets in a portfolio.

We stick with a relatively simple formulation that can already capture per-
sistence in the variances and comovements between returns. The �rst order
diagonal BEKK model runs as follows.(

σ2
M,t σiM,t

σiM,t σ2
i,t

)
=

(
m11 m12

m21 m22

)
+

+

(
a11 0
0 a22

)(
uMt−1
uit−1

)(
uMt−1 uit−1

)( a11 0
0 a22

)
(10)

+

(
b11 0
0 b22

)(
σ2
M,t−1 σiM,t−1

σiM,t−1 σ2
ii,t−1

)(
b11 0
0 b22

)
where the returns have constant (conditional) means and time varying condi-
tional variance and covariances.

In detail for the BEKK model we have the following equations for the con-
ditional evolution of V ar (RM ) and Cov (Ri, RM )

V ar (RM,t) = σ2
M,t = m11 + a211u

2
Mt−1 + b211σ

2
M,t−1 (11)

Cov (Ri,t, RM,t) = σiM,t = m21 + a11a22uit−1uMt−1 + b11b22σiM,t−1 (12)

Note that this essentially speci�es a GARCH(1,1) process for each return,
and a restricted GARCH(1,1) process for the (conditional) covariance (where
the restriction ensures that the variance matrix is positive de�nite). The im-
plied long run (unconditional) variance and covariance are then (noting that
the unconditional expectations E

(
u2Mt−1

)
= V ar (RM ) and E (uMt−1uit−1) =

Cov (Ri, RM ))

V ar (RM ) = m11/
(
1− a211 − b211

)
V ar (Ri) = m22/

(
1− a222 − b222

)
(13)

Cov (Ri, RM ) = m21/ (1− a11a22 − b11b22)

and the model can be used to calculate estimates of βi,t+h at future horizons.
Maximum likelihood estimation returns estimates of the m's, the a's and the b's
together with estimates of σ2

M,t,σ
2
i,t and σiM,t.
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4.5 Estimation of long run beta

If we are purely interested in the long run value a number of possible estimators
suggest themselves. One is to use the estimated coe�cients directly

β̂LR =
m̂21/

(
1− â11â22 − b̂11b̂22

)
m̂11/

(
1− â211 − b̂211

) (14)

An alternative is to use the estimated values σ̂2
M,t and σ̂iM,t. The time series

average of each of these should converge to their long run values ie V ar (RM )
and Cov (Ri, RM ) respectively. So one can also estimate beta as

β̂avs =
1
T

∑
σ̂iM,t

1
T

∑
σ̂2
M,t

Finally one can calculate short run conditional betas as

β̂SR,t =
σ̂iM,t

σ̂2
M,t

One could then estimate the long run beta as a simple average of these short
runs ie

β̂SR =
1

T

∑
t

β̂SR,t =
1

T

∑
t

(
σ̂iM,t/σ̂

2
M,t

)
This gives three methods to estimate beta from the GARCH -BEKK speci-

�cation.
Firstly note that for β̂LR even if we have unbiased estimates of the coef-

�cients (m11,m12,m22, a11, a22, b11, b22) we do not get unbiased estimates of
Cov (Ri, RM ) and V ar (RM ) by plugging in these estimates.

To see this note

E
[
m̂21/

(
1− â11â22 − b̂11b̂22

)]
6=E (m̂21) /

(
1− E (â11)E (â22)− E

(
b̂11

)
E
(
b̂22

))
=m21/ (1− a11a22 − b11b22) = Cov (Ri, RM )

and similarly for the denominator. But we have

plim
(
β̂LR

)
= β

as long as we have consistent estimates of (m11,m12,m22, a11, a22, b11, b22) and
a211 + b211 6= 1 and a11a22 − b11b22 6= 1.

If the GARCH speci�cation implies stationary processes for the conditional
moments σiM,t and σ2

M,t then time series averages of the estimated processes
will converge in probability to the unconditional values. So again we will have

plim
(
β̂avs

)
= β
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though if we are fairly close to (integrated) I-GARCH this convergence may
be quite slow

Finally note also that for β̂SR,t since

E

(
σ̂iM,t

σ̂2
M,t

)
6= E (σ̂iM,t)

E
(
σ̂2
M,t

) =
σiM
σ2
M

= β

an average of the short run β̂SR will typically not be unbiased for β.

5 Simulations

5.1 GARCH and ARCH processes

To illustrate the e�ect of ARCH or GARCH models compared to a situation
of IID shocks we simulate three models for returns. Firstly we make 3000
observations as

.

RET1t = ut

where utis IID N
(
0, σ2

)
and σ2 is chosen to match the daily volatility of ASX

Secondly we specify
RET2t = ut

where ut ∼
√
htεt with εt ∼ IN (0, 1) and ht = 0.00008+0.4u2t−1 is an ARCH(1)

model with coe�cients chosen to match the estimated ARCH(1) values from
ASX

Finally we specify a GARCH(1,1) model

RET3t = ut

where ut ∼
√
htεt with εt ∼ IN (0, 1) and ht = 0.0000017 + 0.87ht−1 +

0.11u2t−1 is a GARCH(1,1) model with coe�cients chosen to match the esti-
mated GARCH(1,1) values from ASX.

The squared returns from each of these simulations are graphed below.
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Figure 5: Squared returns for IID, ARCH(1) and GARCH(1,1) processes
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We see that the IID return simulation generates squared returns that have
a relatively stable pattern over time whereas the ARCH and GARCH models
generate clusters of high and low volatility that mimic much more closely the
pattern we see in the actual data (note these are simulation so aren't attempting
to match the actual pattern observed above).

5.2 Multivariate GARCH

To start we consider what returns series would look like if the world were truly
a BEKK-GARCH model, and we investigate the properties of using rolling OLS
estimation in this situation. We generate 4000 observations on returns using
a BEKK-GARCH(1,1) model. The parameters of the simulation are chosen
to match the estimated coe�cients from a joint ASX.SVT estimation - these
coe�cients are set out in the Table below (estimation by maximum likelihood
using daily data 9/03/2007-8/31/2017 (2527 obs, roughly ten years).

Coe� Value used

m11 0.00000139
m12 0.0000015
m22 0.00000532
a11 0.276366
a22 0.184781
b11 0.954948
b22 0.967509

Table 1 Estimated coe�cients for simulation exercise

The implied long run β using these parameters using the formula β =
m12/(1−a11a22−b11b22)
m11/(1−a211−b211)

can be calculated here as 0.50 (to 2dp).

The model is initialised at uM,0 = ui,0 = 0 and σ2
M,0,σ

2
i,0 and σiM,0 set

to their estimated unconditional values and then updated using the BEKK
formula above. uM,t and ui,t are then generated as random drawings from a joint

(conditionally normal) distribution with covariance matrix

(
σ2
M,t σiM,t

σiM,t σ2
i,t

)
.

First we graph squared market returns in this simulated world (which should
be compared with Figure 3 above)
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Figure 6: Squared returns for simulated BEKK-GARCH process

Again we see that the BEKK-GARCH model is capable of generating the
clusters of volatility seen in the actual data.

Using our 4000 simulated returns we mimic the current procedure by esti-
mating a rolling regression using a window of 500 observations of the simulated
stock return on the simulated market return. This gives 3500 estimates of (daily)
β. These are graphed below
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Figure 7: Rolling OLS β estimates from joint BEKK-GARCH process (500 obs
window)
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The average of the rolling β estimates is 0.61 so in this simulation this
average is about 20% too high. It is important to see what this means. In this
simulation the true long run value of β is 0.5. In a least squares regression on a
randomly chosen window of 500 observations one can expect to see an estimated
β of about 0.6. The estimated βs from the rolling regressions are also distributed
quite widely around the true value with values as large as 0.9 and as small as 0.3.
If one were interested in the short run conditional β (say for portfolio allocation
decisions) then the rolling regression may provide a reasonable estimate of the
recent average value, but (except by chance) the estimate from any particular
regression (or even the average over all regressions) is not a good guide to the
true long run value of β (in this case 0.5).

To get a better picture of the e�ect of the rolling regression approach we
repeat this simulation exercise 2000 times. Figure 8 (below) then shows the
histogram of the averaged rolling βs from these repetitions (ie in each repetition
we estimate 3500 rolling OLS regressions and take the average beta and graph
the histogram of the resulting 2000 averages). Relative to the true long run
parameter the entire distribution is shifted to the right so both mean and median
overstate the true value.
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Figure 8: Histogram of average rolling β estimates (2000 repetitions)

Each repetition of 3500 rolling OLS with window 500 from simulated
multi-GARCH model. True long run β = 0.5.

The results presented are for a single simulation model. Unfortunately there
are too many dimensions to do an encompassing simulation (that is to vary
the original estimation length and parameter values, the simulated data series
length, the rolling OLS window length). We have however repeated this exercise
using various di�erent sample periods to estimate the coe�cients in Table 1, and
these are then used to simulate di�erent lengths of arti�cial returns data and
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rolling OLS estimation using various window length performed. Throughout we
�nd that the dispersion of the estimated βs typically covers values from 0.2/0.3
up to 0.8/0.9 and the average of these rolling OLS β's tends to overstate the
true (calculated) β by a factor of 10-30% with biases seemingly worse when the
rolling window is shorter. Further simulations are discussed below.

5.3 OLS vs GARCH approaches

We simulate a world generated as BEKK GARCH(1,1) (parameters are taken
from full sample BEKK-GARCH(1,1) estimation for SVT). Error distributions
assumed normal. True βLR = 0.4445

We are interested in the behaviour of four estimators:

1. Rolling OLS using 500 observation window.

2. Full sample OLS which is also the realised beta over this sample.

3. BEKK-GARCH - long run parameter estimated from estimated coe�-
cients.

4. BEKK-GARCH(1,1) long run parameter estimated by ratio of average
covaraiance divided by average variance.

For the simulations we consider a sample size of 4000 observations (so roughly
16 years of daily data), 2000, 1000 and 500 (two years daily data).

The Table below summarises the results

Estimation Mean estimated beta Standard deviation

Full sample OLS 0.460 0.087
Rolling OLS (500 window) 0.499 0.078

BEKK-GARCH (coe�cients) 0.445 0.087
BEKK-GARCH (averages) 0.458 0.084

True beta 0.4445
Sample size 4000obs

Estimation Mean estimated beta Standard deviation

Full sample OLS 0.468 0.115
Rolling OLS (500 window) 0.499 0.113

BEKK-GARCH (coe�cients) 0.448 0.118
BEKK-GARCH (averages) 0.465 0.110

True beta 0.4445
Sample size 2000obs
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Estimation Mean estimated beta Standard deviation

Full sample OLS 0.483 0.148
Rolling OLS (500 window) 0.502 0.167

BEKK-GARCH (coe�cients) 0.461 0.181
BEKK-GARCH (averages) 0.478 0.143

True beta 0.4445
Sample size 1000obs

Estimation Mean estimated beta Standard deviation

Full sample OLS 0.501 0.182
Rolling OLS (500 window) 0.501 0.182

BEKK-GARCH (coe�cients) 0.492 0.368
BEKK-GARCH (averages) 0.493 0.184

True beta 0.4445
Sample size 500obs

Table 2 Estimating beta on simulated data of various lengths

Comments

• Full sample OLS is pretty good (realised beta). But needs assumptions
about forecasting forward. OLS on 500 observations would give 8 non-
overlapping betas to forecast forward if one wanted more than two year
beta. Likely to have small sample AR problems. OLS on 4000 observations
could be forecast forward as is - assumes beta constant in future

• GARCH needs large sample to estimate accurately. Using the estimated
coe�cients looks risky if we only have say 500 observations. Average
covariance divided by average variance looks more well behaved. Some
convergence issues in the simulations depending on numerical optimisation
routine used.

• Advantage of GARCH model is it can be used to forecast beta forwards
directly so obtain transition path to long run as well as long run (if one
wants this path - perhaps the pure long run is all we need).

• Need quite long runs of data for the full sample OLS or the BEKK-GARCH
models to home in on the true long run parameter. Persistence in the
variance and covariance can take beta away for prolonged periods

5.4 Summary

• If beta is time varying it follows that the underlying variances and covari-
ances are time varying. Multivariate GARCH models allows estimation of
these time varying second moments directly.
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• Simulation of such a model using typical parameters from a utility shows
substantial movements in the short term (conditional) beta even when the
long run structural beta is constant.

• The simulations suggest rolling OLS estimation of such a model can gen-
erate patterns very similar to those observed on real data

• The individual rolling OLS estimates can be far from the true long run
beta and rather unstable. Even the average of the rolling OLS coe�cients
substantially overstates the true parameter.

• OLS using the full sample gets closer to the long run coe�cient.

• GARCH estimation provides a good estimate of the long run parameter
and also models the short run dynamics of beta
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6 Estimation

The following graphs display estimates using daily data for 15 FTSE compa-
nies.The companies used and mnemonics are

Company

ATK Atkins
BBY Balfour Beatty
BKG Berkely Group
BVS Bovis Homes
GRG Greggs
NEX Nex Group (ICAP)
NG National Gridd
PNN Pennon
SMDS DSSmith Packaging
SRP Serco
SSE Scottish Energy
SVT Severn Trent
TATE Tate and Lyle
UU United Utilities

WEIR Weir Engineering Group
ASX FTSE all share index

Each graph plots 5 series - the �rst two are the time varying, the �nal three
give the horizontal lines.

1. Rolling OLS using a 500 observation window [CAPM_name]

2. Short run βt from a BEKK-GARCH(1,1) model estimated over the full
sample and then averaged over 500 obs [@MOVAV(BETAS_name)]

3. Long run β from a BEKK-GARCH(1,1) model estimated over the full
sample and calculated using the estimated parameters [BETALR_name]

4. Long run β from a BEKK-GARCH(1,1) model estimated over the full
sample using averaged �tted covariance divided by averaged �tted variance
[BETALRAV_name]

5. Full sample OLS estimate (ie the realised beta measure over the full sam-
ple) [CAPMFULL_name]

We see in each case the moving average of the short run (conditional)
estimated β's from the GARCH tracks very closely the 500 observation rolling
window OLS. This strongly suggest that much of the time variation in β is
being driven by temporary autocorrelated changes in the variances and
covariances of the returns series. We also see that full sample OLS returns an
estimate not too dissimilar to the long run β derived from the multivariate
GARCH estimation. This is at least consistent with a view that there is an
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underlying long run value of β and short run deviations are driven by time
variation of covariances and variances about their long run values. These
deviations can be quite persistent. OLS over the longest sample will give an
approximation to the unconditional covariance divided by the unconditional
variance, though here a sample corresponding to about 16 years of daily data
is being used.
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Figure 9 β estimation for various companies, OLS and GARCH approaches.
Sample: 1/06/2000 6/30/2017 daily observations. See text for explanation of
series.
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7 Other Frequencies

In general moving to lower frequency estimation (weekly, monthly or quarterly)
would be unwise as it amounts to simply discarding what could be informative
data. However the averaging implicit in the lower frequency observations can
be expected to reduce heteroscedasticity in the data (as long as the variance
structure obeys some limit theorem) relative to what one observes on daily
data. We see that for ASX this is indeed the case. The Table below shows the
ARCH test discussed above for ASX returns (over the full 2000-2017 sample)
at the daily, weekly monthly quarterly frequencies.

Frequency #lags test statistic p-value

Daily 20 1100.8 0.00
Weekly 4 65.2 0.00
Monthly 2 13 0.002
Quarterly 1 1.05 .31

Table 3 ARCH tests for ASX returns at various frequencies.

Sample period is 01/05/2000-2017 - 08/31/2017.

#lags is the number of lagged squared residual terms used in the ARCH test

Test statistics are χ2
#lags distributed

As we move to the lower frequencies the evidence for heteroscedasticity di-
minishes. At quarterly frequency there is no longer any statistical evidence of
serial correlation in the (squared) residuals. The pattern is similar for the other
returns series.

To the extent that heteroscedasticity ceases to be an issue at lower frequen-
cies we might expect OLS to return �better� estimates of beta in that misspeci�-
cations due to the heteroscedasticity are reduced. The problem of course is that
at lower frequencies we have many fewer non-overlapping blocks of data. Using
even longer intervals of data is of course possible but then raises the problem
that over very long periods there may be structural changes in beta due to the
changing nature of the underlying business (ie beyond the time variation in beta
driven by changing covariances and variances). Table 4 estimates beta by OLS
over di�erent sample periods ranging from two years to 17 years using various
observation frequencies.

Full Sample 00-17
SVT NG UU

Daily 0.53(0.02) 0.61(0.02) 0.57(0.02)
Weekly 0.46(0.04) 0.60(0.03) 0.50(0.03)
Monthly 0.36(0.09) 0.43(0.08) 0.36(0.08)
Quarterly 0.29(0.13) 0.48(0.12) 0.30(0.13)
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Ten Years 07-17
SVT NG UU

Daily 0.60(0.02) 0.61(0.02) 0.60(0.02)
Weekly 0.55(0.04) 0.59(0.04) 0.56(0.04)
Monthly 0.37(0.11) 0.42(0.10) 0.43(0.11)
Quarterly 0.17(0.17) 0.40(0.16) 0.22(0.19)

Five Years 12-17
SVT NG UU

Daily 0.68(0.03) 0.64(0.03) 0.67(0.03)
Weekly 0.74(0.08) 0.68(0.06) 0.76(0.08)
Monthly 1.01(0.20) 0.70(0.20) 0.90(0.22)
Quarterly 0.20(0.37) -0.14(0.40) -0.00(0.53)

Two Years 15-17
SVT NG UU

Daily 0.61(0.05) 0.53(0.04) 0.62(0.05)
Weekly 0.69(0.11) 0.55(0.11) 0.62(0.12)
Monthly 0.96(0.37) 0.88(0.48) 0.96(0.45)
Quarterly 1.01(1.22) 0.04(1.29) 0.75(1.47)

Table 4 Beta estimates from OLS CAPM model over di�erent sample periods
at various frequencies (standard errors in parentheses)

Consistent with the discussion above the OLS estimates at lower frequencies
are in much closer agreement with the long run estimates of beta obtained from
the multivariate GARCH approach. As we move to lower frequencies we gener-
ally see a decline in the estimated betas. But for the shorter estimation windows
using lower frequency data the estimates essentially become uninformative with
very high standard errors.

The conclusion would seem to be that a sensible estimation strategy would
be to use high frequency data and also to use the longest estimation window
possible unless there clear evidence of changing structure of the business. Vari-
ations in short run estimates of beta are to be expected in a heteroscedastic
world and a simple constant long run beta multi-GARCH structure is able to
mimic the observed time variation in beta pretty well.
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7.1 Structural changes and sample period

Nokia was a paper processing business that became a telecoms company. It is
di�cult to believe this would not a�ect its stock market beta. So we need to
consider the possibility of structural shifts in which all the underlying parame-
ters (of the joint distribution) could change. This argues against using very long
runs of data which may include such shifts. If we maintain the idea that forecast
of beta should be some weighted average of current and longer run estimates
then this would suggest maintaining a rolling window for estimation.

The Table below shows BEKK-GARCH(1,1) estimates of the long run beta
for 15 companies using various windows of daily data (computed from formula)

01/05/2000-08/31/2017 09/01/2007-08/31/2017 09/03/2012-08/31/2017

ATK .66 .61 1.05
BBY .83 .88 .97
BKG .71 .80 1.05
BVS .61 .89 .96
GRG .20 .39 .57
NEX .69 .58 .72
NG .48 .46 .65
PNN .38 .42 .63
SMDS .69 .88 1.1
SRP .61 .59 .77
SSE .47 .49 .69
SVT .44 .50 .67
TATE .33 .42 .66
UU .43 .45 .64

WEIR .92 1.21 1.27

#obs 4463 2527 1264

Table 5 BEKK-GARCH estimates over various sample periods, daily data

We see a pretty common pattern in which the 5yr estimate>10 yr estimate >
full sample estimate. This suggests a strategy of estimating short run and long
run beta from a window of say ten years of data and updating the estimates
every two years or so. Current forecasts of beta would then be some weighted
average of these two values. The weight depends both on the degree of
persistence of beta and the horizon for which forecast is required. If the
horizon is not 0 or ∞ then some model for the time evolution of beta is needed
to obtain the weights.
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8 Future beta

Estimation can tell us something about past beta. What is more relevant for
thinking about returns on assets is beta in the future. So we need some method
to link these two. If beta is a constant or, at the other extreme, a random
walk1, then the current estimate should be used as the estimate of future values.
However if beta reverts towards some longer run value then this may not be a
sensible approach. It is di�cult to do this without specifying some model for
the time evolution of beta. For example if one were interested in (average) beta
over the next 500 days then one could use a rolling 500 observation window and
take the �nal value as the current estimate. One could then augment with an
autoregressive model for the evolution of βt estimated over the history of the
rolling beta and project forward using this model.

If we take the rolling beta estimate for SVT shown in Figure 1 the esti-
mated �rst order autocorrelation is 0.9985 (3964 obs). Such a high degree of
autocorrelation is obviously driven by taking 500 day averages of an underlying
changing beta (we get slightly di�erent values if we calculate the autocorrelation
directly, if we specify an OLS regression on the lagged value or if we use eviews
maximum likelihood AR(1) routine which is perhaps not unexpected given the
probable presence of MA terms in a regression of such a βt on its lag and that
we are estimating so close to the unit circle, but the argument for calculating
beta forward remains the same). Projecting this value forward 500 days implies

a coe�cient of (0.9985)
500

= 0.472 on the current value so in this setup the two
year forward β would have reverted roughly half way to its long run value.

In the GARCH framework estimation provides not only an estimate of
current βt but also estimates the equations of motion for Covt (Ri, RM ) and
V art (RM ) given in (11) and (12). These can be iterated forwards to give esti-
mated beta at future horizons.

Notice that the strategy of tailoring the estimation window to the desired
forecast window (so for example if one is interested in the one month ahead beta
one could estimate by OLS on monthly data and this would provide a measure
of the (average) beta over a one month interval that could be used becomes
infeasible if the forecast horizon goes much beyond a quarter, there just isn't a
su�cient run of returns data to estimate accurately such models.

9 Realised beta estimation

For comparison we also construct realised beta at quarterly intervals and �t
an AR1 model to the resulting time series. We estimate realised beta over the
2000-2017 period using 66 days (one quarter) non-overlapping intervals for each
realised value. Realised beta is then the ratio of realised covariance given by∑66
j=1RitjRMtj in each quarter t to realised variance

∑66
j=1R

2
Mtj

. An AR1
model is �tted to the resulting time series. Results are reported in Table below
(the long run is estimated as α

1−λ in the regression yt = α+ λyt−1 + vt).

1Strictly speaking a martingale
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SVT NG UU
Realised const 0.23 0.46 0.39
beta AR1 0.55 0.22 0.27

regression DW 2.01 1.92 2.03
long run 0.51 0.59 0.53

Table 6 Realised beta regressions.

Realised quarterly betas estimated from 66 daily obs.

The AR1 regression is over 68 observations

The long run estimates are simlar to those obtained by the GARCH model.
The persistence of the realised beta (at quarterly frequency) is quite low for NG
and UU, and even the SVT autoregressive parameter implies relatively swift
reversion to the mean. If we use only the last ten years of realised quarterly
betas the implied long run values are SVT=0.59, NG=0.58 and UU=0.58.
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10 Conclusion

We argue

1. If beta is believed to be a constant one should use the full sample of data,
at the highest frequency where accurate measurement is possible, unless
there is evidence of a clear structural break in the nature of the underlying
business.

2. However there is overwhelming evidence that beta is time varying and
these variations can be quite persistent.

3. If beta is time varying forecasts over di�erent horizons really neeed some
model of how beta evolves. If beta is stationary then forecast will be some
weighted average of current and long run levels. The weight depends on
forecast horizon and the persistence of beta.

4. Simulations show much of the pattern of time variation seen in beta would
arise from time varying covariance and variances around longer run level

5. Simulations show that if the world is BEKK-GARCH estimation over short
run by OLS are overestimates of true beta. GARCH short run estimates
are similar suggesting the OLS is actually estimating averages of the con-
ditional betas.

6. Over longer run of data both OLS and GARCH can return good estimates
of long run beta. GARCH also implicitly models time variation of beta
(ie persistence).

7. Long run estimates from GARCH and OLS are quite similar. The (aver-
aged) conditional beta from the GARCH and the rolling 500 obs window
OLS estimates track each other closely.

8. Realised beta assuming an AR1 model for the conditional beta provide
similar long run estimates.

9. Using lower frequencies eliminates a lot of the heteroscedasticity and gives
estimates closer to the long run betas. But this requires a much longer
sample of data for estimation.

10. There is still the possibility of stuctural change. This suggests that using
a rolling window may still be sensible.

11. This suggests a strategy of estimating beta over say ten years of daily
data and constructing forecast using weighted average of conditional (short
run) and unconditional (long run) estimates. Weight depends on forecasts
horizon and persistence of beta.
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Estimates of long run beta from various estimation techniques all based on daily
data are reported below.

SVT NG UU

Full Sample OLS 0.53 0.61 0.57
GARCH (coefs) 0.44 0.48 0.43
GARCH (avs) 0.48 0.59 0.53

Realised beta LR 0.51 0.59 0.53

Table 7 Estimates of long run beta various methods for utilities

Notes:

1. OLS is full sample daily data 2000-2017

2. GARCH (coefs) uses estimated params from BEKK-GARCH(1,1)

3. GARCH (avs) uses averaged covariance and variances from
BEKK-GARCH(1,1)

4. Realised beta uses 66 daily observations for each realised variance and
covariance and then �ts an AR1 to resulting series
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