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Introduction

This note provides an update on the beta estimates reported in Robert-
son (2018) and also considers the issue of debt-equity ratios (gearing) on the
calculation. In that note I argued that in estimating equity betas:

1. that the time varying nature of beta should be acknowledged, both in the
estimation method and (importantly) in forecasting future betas over the
horizon relevant for regulatory control.

2. that the highest frequency data should be used without running into lig-
uidity, bid-ask market microstructure issues.

3. that the maximum time interval of data should be used consistent with a
view that there is no underlying structural shift in the process generating
the equity beta (ie the correlations and variances of the underlying asset
prices can be reasonably assumed fixed).

The conclusion reached was to use five or ten years of daily data and for esti-
mation either

e realised beta (OLS) over the full sample with the estimated coefficient
providing the forecast

e GARCH estimation of the full sample and calculation of the implied long
run beta from the estimated second moments

e a rolling realised beta estimation where beta is estimated on daily data
over a (say) quarterly interval and the resulting estimates forecast forward
using (say) an AR(1) model.

Extensive estimation and simulation showed that the estimates from these ap-
proaches varied little in magnitude in statistical terms (though these slight dif-
ferences may be of greater economic value). It should be emphasised that an
approach of using simply the most recent data, estimating by OLS and using the
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estimate as the forecast (over a horizon that may exceed the estimation period)
was not advocated (and some exploration of reasons for this will be discussed
below).

This note extends and updates these comparisons to cover the more recent
turmoil in equity markets, where clear changes in both variances and covariances
might be expected to change the signal-noise ratio in the data and confirm or
refute earlier analysis.

One aspect of regulatory requirements that was not addressed previously
was the appropriateness of using equity beta for these purposes or whether asset
betas correcting for firm gearing should be used. I therefore include discussion
of different approaches to the adjustment that might be required in forecasting
beta due to the effect of gearing.

Equity and Asset Beta
I briefly review the theoretical issues on calculating beta. In an environment
in which the CAPM holds - broadly mean-variance analysis holds so represen-
tative agents have quadratic utility or asset returns belong to a location-scale
family (which includes, but is not limited, to normal distributions) then the
portfolio choices of utility maximising rational agents leads to a relationship
such that the (expected) return on an asset ¢ and that on the relevant market
M are linked by
E(R;) — Ry = B; (E(Rwm) — Ry) (1)

. _ Cov(Ri,Bar)
where §; = Var(Bar)

Thus we can write a relation between actual returns
Ry = o+ iRy + u; (2)

where u; collects the expectational errors, and, in a rational world, would be
orthogonal to the information set used to form those expectations. In partic-
ular u; will be zero mean conditional on this information E (u; | ) = 0. It is
important to note that (2) is not a classical linear regression model capturing
a causal relation between market and individual returns. It is an equilbrium
relation derived from individual maximising behaviour.

If ; is assumed a constant (which would follow if both Cov (R;, Rjs) and
Var (Ryr) are time invariant) then given, a time series of data on returns for
equity ¢ and market M, one can estimate [3; as

5 (R = Ra) (R~ Rav)
' > (Rare — RMt)2

wherein the numerator is an estimator of Cov (R;, Rys) and the denominator of
Var (Rar). A convenient way to obtain this estimate is to use standard statisti-
cal software to estimate a regression of R;; on Rys¢. It is important to note that
this should not be thought of as estimating (2) as a regression equation (so wor-
ries about standard regression misspecification tests are not germane because
we are not trying to get unbiased estimates of a causal regression coefficient).

(3)



If B; is not a constant then one can still perform this calculation, but the BZ
so obtained would be some weighted average of the (time varying) underlying £;.
The (statistical) properties of the expression in (3) then depend on the (joint)
distribution of the random process ( }?]\Zt ) t=1,2,3...,.

Few practitioners believe that 3; is constant and the usual approach is to
perform a rolling OLS over some short recent interval (such as two or five years)
of the LS regression in (2) and use the estimated value as the forecast value.
This involves an assumption that, at each estimation point, beta has varied
historically (thus requiring a short recent estimation interval) but will not vary in
the future forecast period. The estimation interval chosen then reflects a trade-
off between having enough observations in the window to improve statistical
properties whilst hoping the underlying parameter has not varied “too much”
over this period. In Robertson (2019) I argued that an estimation approach that
acknowledged the time varying properties of beta is required. Furthermore, in
the regulatory context, given the need to forecast over a horizon of several years
some understanding of the time series properties of beta is required (so the fact
that rolling OLS and more sophisticated techniques might often generate similar
estimates does not provide a defence of the rolling OLS approach). This leads
to the suggestions outlined above. In GARCH the variances and covariances are
parameterised to vary on a daily basis so that beta varies around a stable long
run value. Realised beta assumes beta varies continuously and the (cumulated)
values are calculated at, say, quarterly frequency using daily data, and are then
forecast forward using a simple time series model. In both cases a long run of
high frequency data is used.

One issue that was not addressed was that the CAPM generates an expected
rate of return for risky investments that are equity financed. Some allowance
needs to be made for debt financing. Since the beta of a portfolio is simply
the (weighted) sum of the betas of the underlying components the standard
approach for calculating beta of a levered firm is to take a weighted sum of
the firm’s equity and debt betas. In a straightforward way this would give the
following relationship between asset and equity beta

E D
6asset - mﬂEquity + mﬁDebt

where E and D are respectively the value of the equity and debt of the firm.
Debt betas are rather difficult to estimate but for a large well run regulated
monopoly there are good arguments that Spep: should be very low or indeed
zero. And this is an assumption that is often made. In this report I calculate
asset betas using debt beta values of both 0 and 0.125 for these companies for
comparison.

In the Sections below I update the earlier estimates and also provide some
overview of recent market events through daily beta estimates. I also discuss how
gearing can be used to adjust the equity beta historically and, more importantly,
the issues it causes for future forecasting.



Equity beta updates

Daily data on share prices for the utilities and all share index are used.
The full dataset comprises 6154 observations covering the trading days from
01/01/1996 to 11/05/2020. Table 1 gives estimated betas (reported to 3 dp)
from various estimation procedures using different sample intervals. All estima-
tion was performed in Eviews. Standard errors are not reported because we are
here interested in point estimates not inference.

Some points to note.

The final column uses the 504 day CAPM estimate from 11th May 2020.
The rolling CAPM estimates themselves are quite dispersed though at
least over the past 15-20 years appear to vary around a long run stable
level (see Figure 1). Using post 2000 the min and max values (of the rolling
CAPM) are for NG (0.38,0.80), for PNN (-0.04,0.78) for SSE (0.20,1.11)
for SVT (0.02,0.82) and for UU (0.27,0.82). The estimate of beta is thus
highly dependent on the date chosen for the (here) two year window.

The GARCH model also generates daily estimates of beta. A 504 day
moving average of these daily estimates follows the 504 day rolling CAPM
estimates pretty closely, lending weight to the argument above that the
rolling OLS is actually calculating a weighted average of an underlying
time varying beta - see Figure 2.

The rolling OLS is subject to some abrupt changes and instability with
substantial changes in the estimate from relatively small changes (often
just one or two days) in the estimation interval. These graphs emphasise
the importance of a time varying model for beta recognising that there
are short term fluctuations around a much more stable underlying level.

Figure 3 graphs four alternative methods of estimating the long run beta
(plus the rolling and smoothed average versions). This done using the post
2000 data though the charts for ten years of data are similar. A number
of features stand out

— The rolling OLS CAPM (and smoothed daily GARCH betas) do
appear to revert to the long run levels - the distribution of time above
and below the long run is asymmetric possibly due to skewness in the
(distribution of the) daily betas.

— The implied longs runs using full sample OLS, the long run derived
from an AR1 of 63 day realised betas, and the GARCH estimates
calculated as average covariance/average variance all agree pretty
closely in each case. The level calculated from the estimated GARCH
coefficients tends to be lower.

— There is a fair degree of persistence in the time varying betas. The 63
day realised betas have a first order autocorrelation around 0.4-0.5
except for NG which has very little autocorrelation (see Table 2).



— There is no indication of non-stationarity in the daily betas - on post
2000 data the ADF statistics are all around -10 (5143 obs). Note
that although the GARCH assumes stationarity of the covariance
and variance processes their ratio (ie beta) is not restricted.

— 63 day realised beta estimates also show stationarity - on post 2000
data (81 obs) we get ADFs are NG -8.4, PNN -5.5, SSE -5.2, SVT
-5.2 and UU -6.0.



Gearing

Figure 4 shows gearing defined as net debt/enterprise value. Here we shall
operate at monthly frequency. Enterprise value (EV) is available as daily data
which is converted to monthly by averaging. The net debt data is only at 6
monthly intervals so is interpolated as constant within the six months. Move-
ments within the six months of these variables are thus entirely driven by move-
ments in EV. By and large gearing is relatively flat over the last ten years
(regressions of gearing on a time trend are reported in Table 3. The trend
variable is statistically insignificant for all except SSE (at the 5% level). The
implied change due to trend over the 10 year period is given in Column 4 and is
a 2nd or 3rd decimal place effect, again excepting SSE where the trend increase
over the period is of the order of 0.14 (from an initial gearing level around 0.25).
Where the trend is statistically insignificant the defensible approach would be to
forecast gearing forward at the level of its historical average over the estimation
period. For simplicity I use the same approach for SSE though a case could
be made that the trending behaviour is better represented as discrete shifts in
gearing around about 2008 and 2016 to a current level around 0.4.

Table 4 reports equity beta estimates calculated from 5 year,10 year and
post-2000 samples of daily data using GARCH, realised beta (63 day pus AR1)
and full sample OLS estimation. Columns (D)-(I) then calculate asset betas
using an assumed debt beta of 0.125 (Columns (D),(E) and (F')) and 0 (Columns
(G),(H) and (I))for comparison. Gearing is assumed constant at the average
(monthly) level in the estimation period (reported in the gearing column).



Table 1: Beta Estimates
@ ® © O (® (F
Full
NG 0.515 0.609 0.610 0.609 0.623 0.632
PNN 0.334 0.453 0.415 0.441 0.419 0.508
SSE 0472 0.545 0.575 0.542 0.603 1.056
SVT 0.444 0.555 0.495 0.518 0.518 0.543
UU  0.459 0.587 0.552 0.568 0.575 0.560

2000
NG 0471 0.588 0.591 0.578 0.615 0.632
PNN 0.379 0.502 0427 0473 0.450 0.508
SSE 0475 0.551  0.585  0.551 0.627 1.056
SVT 0.445 0.551 0.494 0.509 0.530 0.543
UU 0438 0.557 0.540 0.528 0.569 0.560

10 yrs
NG 0529 0.596 0.570 0.578 0.587 0.632
PNN 0539 0.625 0.552 0.622 0.565 0.508
SSE  0.600 0.632 0.700 0.632 0.786 1.056
SVT 0.562 0.643 0.547 0.610 0.575 0.543
UU 0.541 0.621 0.553 0.610 0.573 0.560

5 yrs
NG 0496 0.605 0.581 0.581 0.630 0.632
PNN 0.548 0.661 0.556 0.634 0.592 0.508
SSE  0.706 0.727 0.876  0.707 0.974 1.056
SVT 0.549 0.630 0.562 0.587 0.591 0.543
UU 0.583 0.656 0.595 0.602 0.614 0.560

Note:

1. Column (A) GARCH(1,1) beta calculated from estimated coefs
Column (B) GARCH(1,1) average of daily betas
Column (C) GARCH(1,1) average covariance/average variance
Column (D) 63 day realised beta forecast forward using AR1
Column (E) Full sample CAPM
Column (F) Rolling window CAPM (504 days) final obs.

2. Sample periods:
Full: 03/01/96-11/05/20 (6154 obs)
2000: 01/01/00-11/05/20 (5144 obs)
10 yrs: 12/05/10-11/05/20 (2527 obs)
5 yrs: 12/05/15-11/05/20 (1265 obs)



Table 2: Realised beta models
Realised betas estimated on 63 day non-overlapping intervals.
Fitted AR1 using 81 observations (post 2000).
Long run calculated from estimated coefficients.

[ Av] o[ p [F]DW]S |
NG | 0.58 | 0.54 | 0.01 | 0.00 | 2.0 | 0.58
PNN | 047 | 0.26 | 0.45 | 0.21 | 2.1 | 0.47
SSE | 0.54 | 0.31 | 0.44 | 0.18 | 1.8 | 0.55
SVT | 0.51 | 0.26 | 0.48 | 0.23 | 2.1 | 0.51

UU | 053|033 ] 038|0.15| 1.9 | 0.53

Note: These are the regressions underlying Column (D) in Table 1 (post
2000 data). Av is sample average of the dependent variable. « and p the
estimated intercept and AR1 coefficient. DW is the Durbin-Watson test statistic
for residual autocorrelation and the final column the estimated long run average
value implied by the estimated coefficients.



Table 3: Gearing trend models
Regression is: gearing = a + b x trend + ¢
Sample period 2010M04-2020M03 (120 obs)

’ ‘ b se ‘ t-ratio ‘ 120 month effect ‘
NG -0.00026 | 0.00014 | -1.90 -0.016
PNN | -0.00007 | 0.00009 | -0.80 -0.004
SSE 0.00114 | 0.00014 | 8.08 0.137
SVT | 0.00004 | 0.00009 | 0.48 0.003
UuU 0.00005 | 0.00008 | 0.54 0.003

Note: Column (2) is estimated coefficient on (monthly) trend. Column (3)
estimated standard error. Column (4) the t-ratio and Column (5) the implied
ten year change in gearing from the estimated trend.



Table 4: Equity and Asset betas - different estimations and sample

periods

Estimation period post 2000

(A) B) (€| gearing| (D) (E) (F)| (G) ®H) I
NG 0.591 0.578 0.615 0.482 0.366 0.359 0.379 | 0.306 0.299 0.319
PNN | 0427 0.473 0.450 0.477 0.283 0.307 0.295 | 0.223 0.247 0.235
SSE | 0.585 0.551 0.627 0.257 0.467 0.442 0.498 | 0.435 0.409 0.466
SVT | 0.494 0.509 0.530 0.517 0.303 0.310 0.321 | 0.238 0.246 0.256
uu 0.540 0.528 0.569 0.519 0.325 0.319 0.339 | 0.260 0.254 0.274

Estimation period last 10 years

(A B (€| gearing| (D) (E) (F) | (G H) (@
NG 0.570 0.578 0.587 0.452 0.369 0.373 0.378 | 0.312 0.317 0.322
PNN | 0.552  0.622 0.565 0.448 0.360 0.399 0.368 | 0.304 0.343 0.312
SSE | 0.700 0.632 0.786 0.307 0.524 0.477 0.583 | 0.485 0.438 0.545
SVT | 0.547 0.610 0.575 0.525 0.325 0.356 0.339 | 0.260 0.290 0.273
Uuu 0.553 0.610 0.573 0.558 0.314 0.339 0.323 | 0.244 0.270 0.253

Estimation period last 5 years

(A B (€| gearing| (D) (E) (F) | (G) H) (@
NG 0.581 0.581 0.630 0.443 0.379 0.379 0.406 | 0.323 0.324 0.351
PNN | 0.556 0.634 0.592 0.445 0.364 0.408 0.384 | 0.309 0.352 0.328
SSE | 0.876 0.707 0.974 0.341 0.620 0.509 0.684 | 0.578 0.466 0.642
SVT | 0.562 0.587 0.591 0.523 0.334 0.345 0.347 | 0.268 0.280 0.282
uu 0.595 0.602 0.614 0.558 0.333 0.336 0.341 | 0.263 0.266 0.271

Note: For each sample period columns (A), (B) and (C) are the equity betas

estimated using

- Column (A) GARCH average covar/average var

- Column (B) OLS 63 day realised beta forecast by AR1
- Column (C) OLS Full sample

Columns (D), (E) and (F) are then asset betas estimated using the equity
betas of Columns (A), (B) and (C), respectively, using the estimated gearing
level in the column headed gearing and an assumed debt beta of 0.125.

Columns (G), (H) and (I) are then asset betas estimated using the equity
betas of Columns (A), (B) and (C), respectively, using the estimated gearing
level in the column headed gearing and an assumed debt beta of 0.
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Figure 1 Rolling (504 day) CAPM estimates
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post 2000 data
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Figure 2: Rolling CAPM and smoothed daily GARCH estimates
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Figure 3: Beta estimates
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BETA ESTIMATES FOR UU
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Figure 4 Gearing
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Appendix I: Recent events

One advantage of the GARCH approach is that the method returns daily
estimates of Cov (R;, Rar), Var (R;), Var (Ry) and 3; = %. It is in-
teresting to view the recent market movements with the Covid-19 events through
these estimates.

What becomes clear is that all utilities showed a spike in beta in December
2019. Both the covariances and market volatility rise slightly at this time but
the proportionate rise in covariances is much larger giving a rapid increase in
beta. Betas then revert to a more usual level through early 2020 except for SSE
which sees another spike in beta. The rapid increases in the covariances and in
market volatility during the Covid crisis are clearly visible in the most recent
data, but for NG, PNN, SVT and UU the ratio has stayed remarkably stable
over this time. By the very end of the sample even SSE has reverted to its more
usual level. The dramatic spike visible in the rolling CAPM for SSE (Figure 1)
looks unlikely to persist.
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Figure Al: Daily cov, var and beta estimates
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Figure A2: Recent Daily Movements

Covariance, variance and beta estimates for NG: post 2000 sample
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Covariance, variance and beta estimates for PNN: post 2000 sample
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Appendix IT Some issues with OLS and time varying beta

If we start from the assumption that equity betas are time varying then the
expected return model for equity 7 is

Ry = o+ By Rare + i

where &;; captures the expectational errors so should be orthogonal to everything
dated earlier. We shall assume that (;; is time varying around a constant mean.
Dropping the i subscript for clarity gives

Ry =a+ B Ry +&
Which we can rewrite as

Ry = o+ BRue + (B — B) Rue + &

where 3 is the average of the 5; over the sample period. This gives the CAPM
regression in the case of an underlying time varying beta.

Two issues arise in using OLS in these circumstances:
Firstly letting uy = (8; — 8) Rt + & and we get the CAPM regression is
least squares on
Rt =« +,BRM75 + Ut

over some sample period T'=1,...,T. The OLS estimate is given by
75 2. (Rit — Rit) (Rase — Rae)

Bi = -
5 > (R — RMt)2

where the bars denote average over the sample period. It is useful to manipulate
this as follows

s Cov (R, Rye) — Cov (o + BRagt + ue, Rage)

" Var(Rae) Var (Rar)
_ Cov(a,Ryre)  Cov (BRpyge, Rye)  Cov (ug, Rat)
Var (Rat) Var (Rae) Var (Re)

so the large sample properties of the OLS estimate are given by the behaviour
of these three terms. The first is heading towards zero, and the second is simply
B. The third measures comovement between u; = (8; — 8) Ryt + & and Ryyy.
Typically in a random coefficients model any variation in the slope coefficient
is assumed independent of the regressor so that the compound error (u:) is
then conditionally independent of the regressor and in these circumstances OLS
returns the average (of the random coefficient).

However if there is comovement then this final term need not be zero, that is
if the daily movements in beta have some systematic relation to market returns
(or volatility) then this will get picked up by the OLS estimator.
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Cov(ug,Rat)

Var(Bare) & bit more. The sample value of the numerator

We can dig into
is
1

_ 1 _
T—1 (RMt - RMt) (ug — ) = 71 (Z Ryppuy — TRMtﬂt>

where u; = (8t — 8) Ry + & So

e (3 Rasete — TRueie) = 7t 3" Rage (B — B) Rase + &) — e Rare((Be — ) By + &0
- S - B Bt 3 Runts
R R W (L)

If we assume &; is independent of the vector Ry (note this requires & unrelated
to both past and future Rjys¢) and zero mean then the second and third terms
have plim zero. This leaves
1 5 T -
71 2 (B =B By — 7 RBann((Be = B) Bave)

Now if 8; — B were independent of Rjy;; then both of these would also head
towards zero (given the assumption that the long run average of the f; exists).

But if the movements of the daily beta (; around its long run average 3
are systematically related to market volatility at the daily frequency then it is
difficult to see why this expression should have zero limit.

A second problem that arises is that the parameter of interest 3 is actually
the ratio of a covariance to a variance. In this situation it is not clear that
the average value of beta is the correct object to estimate. Depending on the
assumptions we make about the source of the time variation in 8 the OLS
approach may be misleading (this point is also made in the May 2019 OFGEM
report: RIIO-2 Sector Specific Methodology Decision — Finance) .

If beta is time varying then it must be that the covariances and/or the vari-
ances are also time varying. In the previous report I argued that one needs to
specify a model for how these evolve over time. In particular if Cov (R;t, Rae)
and Var (Rp) vary about some long run stationary level then the long run
beta is the ratio of these two long run levels and this is not the same as the
average of the daily betas due to a Jensen’s Inequality effect (that is the av-
erage of the ratio is not the same as the ratio of the averages). The GARCH
model proposes a particular (stationary) structure for the time evolution of both
Cov (R, Ryt) and Var (Rps:) around their long run stationary levels. If we
call these Cov* (R, Rare) and Var* (Ry) and it is the ratio of these two we
seek. Taking the average of daily betas (which is what OLS is doing in esti-
mating 3 above) is not quite correct because there’s a Jensen’s inequality term.
That is if 8; is the average of the daily betas then

B 1 Covy (Rig, Rast) E (%> Covy (Rit, Rar)) _ Cov* (Rit, Rut)
Ef) =E <T 2 ( Var: (Rorr) )) P B Var (Bar)) | Var (Rard)

= ﬁi,LR
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As argued above OLS provides an estimate of the average of the daily betas
and so does not necessarily provide an unbiased estimate of the long run beta.
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